首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Kang JH 《BMB reports》2010,43(10):683-687
Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with H(2)O(2). The results show that carnosine and homocarnosine prevented ferritin/H(2)O(2)-mediated DNA strand breakage. These compounds effectively inhibited ferritin/H(2)O(2)-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin÷H(2)O(2) reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.  相似文献   

2.
Background and objective

Oxidative stress is a process that occurs through free radicals on the cell membranes which causes damage to the cell and intracellular organelles, especially mitochondria membranes. H2O2 induced oxidative stress in human cells is of interest in toxicological research since oxidative stress plays a main role in the etiology of several pathological conditions. Neutrophil Elastase (Serine proteinase) is involved in the pathology process of emphysema as a respiratory disease through lung inflammation, and destruction of alveolar walls. The present study investigated the direct oxidative stress effects of Elastase in comparison with H2O2 on human lung epithelial cells (A549 cells) concerning the generation of reactive oxygen species (ROS) and modulation of oxidation resistance 1 (OXR1) and its downstream pathway using the well-known antioxidant Ellagic acid as an activator of antioxidant genes.

Materials and methods

The human pulmonary epithelial cells (A549) were divided into the nine groups including Negative control, Positive control (H2O2), Elastase (15, 30, and 60 mU/mL), Ellagic acid (10 μmol/L), and Elastase?+?Ellagic acid. Cytotoxicity, ROS generation, oxidative stress profile, level of reactive metabolites, and gene expression of OXR1 and its downstream genes were measured in all groups.

Results

The obtained data demonstrated that Elastase exposure caused oxidative stress damage in a dose-depended manner which was associated with decreases in antioxidant defense system genes. Conversely, treatment with Ellagic acid as a potent antioxidant showed improved antioxidant enzyme activity and content which was in line with the upregulation of OXR1 signaling pathway genes.

Conclusions

The present findings can highlight the novel mechanism underlying the oxidative stress induced by Neutrophil Elastase through OXR1 and related genes. Moreover, the benefit of Ellagic acid on cytoprotection, resulting from its antioxidant properties was documented.

  相似文献   

3.
Kang KA  Lee KH  Chae S  Zhang R  Jung MS  Lee Y  Kim SY  Kim HS  Joo HG  Park JW  Ham YM  Lee NH  Hyun JW 《FEBS letters》2005,579(28):6295-6304
We have investigated the cytoprotective effect of eckol, which was isolated from Ecklonia cava, against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Eckol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, eckol reduced H(2)O(2) induced cell death in V79-4 cells. In addition, eckol inhibited cell damage induced by serum starvation and radiation by scavenging ROS. Eckol was found to increase the activity of catalase and its protein expression. Further, molecular mechanistic study revealed that eckol increased phosphorylation of extracellular signal-regulated kinase and activity of nuclear factor kappa B. Taken together, the results suggest that eckol protects V79-4 cells against oxidative damage by enhancing the cellular antioxidant activity and modulating cellular signal pathway.  相似文献   

4.
The airway epithelium is critical for the normal integrity and function of the respiratory system. Excessive epithelial cell apoptosis contributes to cell damage and airway inflammation. We previously demonstrated that lymphocyte-derived microparticles (LMPs) induce apoptosis of human bronchial epithelial cells. However, the underlying mechanisms contributing to LMPs-evoked epithelial cell death are largely unknown. Here we used bronchial and lung tissue cultures to confirm the pro-apoptotic effects of LMPs. In cell culture experiments, we found that LMPs induced human airway epithelial cell apoptosis with associated increases in caspase-3 activity. In addition, LMPs treatment triggered oxidative stress in epithelial cells by enhancing production of malondialdehyde, superoxide, and reactive oxygen species (ROS), and by inhibiting production of the antioxidant glutathione. Moreover, decreasing cellular ROS with the antioxidant N-acetylcysteine rescued epithelial cell viability. Together, these results demonstrate an important role for oxidative stress in LMPs-induced cell death. In epithelial cells, LMPs treatment induced phosphorylation of p38 MAPK and arachidonic acid accumulation. Moreover, arachidonic acid was significantly cytotoxic towards LMPs-treated epithelial cells, whereas inhibition of p38 MAPK was protective against these cytotoxic effects. Similarly, inhibition of arachidonic acid production led to decreased caspase-3 activity, thus rescuing airway epithelial cells from LMPs-induced cell death. In conclusion, our results show that LMPs induce airway epithelial cell apoptosis by activating p38 MAPK signaling and stimulating production of arachidonic acid, with consequent increases in oxidative stress and caspase-3 activity. As such, LMPs may be regarded as deleterious markers of epithelial cell damage in respiratory diseases.  相似文献   

5.
Mitochondria can be a source of reactive oxygen species (ROS) and a target of oxidative damage during oxidative stress. In this connection, the effect of photodynamic treatment (PDT) with Mitotracker Red (MR) as a mitochondria-targeted photosensitizer has been studied in HeLa cells. It is shown that MR produces both singlet oxygen and superoxide anion upon photoactivation and causes photoinactivation of gramicidin channels in a model system (planar lipid bilayer). Mitochondria-targeted antioxidant (MitoQ) inhibits this effect. In living cells, MR-mediated PDT initiates a delayed ("dark") accumulation of ROS, which is accelerated by inhibitors of the respiratory chain (piericidin, rotenone and myxothiazol) and inhibited by MitoQ and diphenyleneiodonium (an inhibitor of flavin enzymes), indicating that flavin of Complex I is involved in the ROS production. PDT causes necrosis that is prevented by MitoQ. Treatment of the cell with hydrogen peroxide causes accumulation of ROS, and the effects of inhibitors and MitoQ are similar to that described for the PDT model. Apoptosis caused by H2O2 is augmented by the inhibitors of respiration and suppressed by MitoQ. It is concluded that the initial segments of the respiratory chain can be an important source of ROS, which are targeted to mitochondria, determining the fate of the cell subjected to oxidative stress.  相似文献   

6.
7.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

8.
It is well established that the brain is particularly susceptible to oxidative damage due to its high consumption of oxygen and that astrocytes are involved in a variety of important activities for the nervous system, including a protective role against damage induced by reactive oxygen species (ROS). The use of antioxidant compounds, such as polyphenol resveratrol found in red wine, to improve endogenous antioxidant defenses has been proposed for neural protection. The aim of this study is to evaluate the putative protective effect of resveratrol against acute H2O2-induced oxidative stress in astrocyte cultures, evaluating ROS production, glutamate uptake activity, glutathione content and S100B secretion. Our results confirm the ability of resveratrol to counteract oxidative damage caused by H2O2, not only by its antioxidant properties, but also through the modulation of important glial functions, particularly improving glutamate uptake activity, increasing glutathione content and stimulating S100B secretion, which all contribute to the functional recovery after brain injury.  相似文献   

9.
Intrinsic oxidative stress through enhanced production of reactive oxygen species (ROS) in prostate and other cancers may contribute to cancer progression due to its stimulating effect on cancer growth. In this study, we investigate differential responses to exogenous oxidative stimuli between aggressive prostate cancer and normal cell lines and explore potential mechanisms through interactions between cytotoxicity, cellular ROS production and oxidative DNA damage. The circular, multi-copy mitochondrial DNA (mtDNA) is used as a sensitive surrogate to oxidative DNA damage. We demonstrate that exogenous H(2)O(2) induces preferential cytotoxicity in aggressive prostate cancer than normal cells; a cascade production of cellular ROS, composed mainly of superoxide (O(2)(-)), is shown to be a critical determinant of H(2)O(2)-induced selective toxicity in cancer cells. In contrast, mtDNA damage and copy number depletion, as measured by a novel two-phase strategy of the supercoiling-sensitive qPCR method, are very sensitive to exogenous H(2)O(2) exposure in both cancer and normal cell lines. Moreover, we demonstrate for the first time that the sensitive mtDNA damage response to exogenous H(2)O(2) is independent of secondary cellular ROS production triggered by several ROS modulators regardless of cell phenotypes. These new findings suggest different mechanisms underpinning cytotoxicity and DNA damage induced by oxidative stress and a susceptible phenotype to oxidative injury associated with aggressive prostate cancer cells in vitro.  相似文献   

10.
Several serine proteases are directly cytotoxic. We investigated whether the cytotoxic effects of proteases are associated with increased levels of reactive oxygen species (ROS) in cells. We found that treatment of lung fibroblasts or bronchial epithelial cells with relatively high concentrations (0.1--100 U/ml) of neutrophil elastase, trypsin, and Pronase increased ROS levels in the mitochondria and cytoplasm. The protease-induced increase in ROS was associated with oxidative cellular injury as determined by generation of 8-hydroxy-2'-deoxyguanosine and malonaldehyde plus 4-hydroxyalkenal. The protease-induced increase in ROS was not merely due to cell detachment because the proteases also caused an increase in ROS in suspended cells, which precluded attachment to the extracellular matrix. The protease-induced increase in ROS appears to contribute to cytotoxicity because cell death induced by proteases was attenuated by treatment with catalase, a decomposer of H(2)O(2), and accelerated by treatment with aminotriazole, a catalase inhibitor. These results suggest that several proteases increase oxidative stress, indicating a direct interaction between proteases and ROS in mediating cytotoxicity.  相似文献   

11.
Reactive oxygen species (ROS) play an important role as mediators of pulmonary damage in mineral dust-induced diseases. Studies carried out to date have largely focused on silica-induced production of ROS by lung phagocytes. In this study we investigated the hypothesis that crystalline silica Min-U-Sil 5 can induce elevations in intracellular ROS in human bronchial epithelial cells BEAS-2B, via an indirect mechanism that involves ROS-inducing intracellular factors, through a reduction of antiglycation (glyoxalase enzymes) and antioxidant (paraoxonase 1 and glutathione-S-transferases) enzymatic defenses. The results show that crystalline silica Min-U-Sil 5 causes a significant reduction in the efficiency of antiglycation and antioxidant enzymatic defenses, paralleled by an early and extensive ROS generation, thus preventing the cells from an efficient scavenging action, and eliciting oxidative damage. These results confirm the importance of ROS in development of crystalline silica-induced oxidative stress and emphasize the pivotal role of antiglycation/antioxidant and detoxifying systems in determining the level of protection from free radicals-induced injury for cells exposed to crystalline silica Min-U-Sil 5.  相似文献   

12.
13.
It has been well accepted that increased reactive oxygen species (ROS) and the subsequent oxidative stress is one of the major causes of ischemia/reperfusion (I/R) injury. DJ‐1 protein, as a multifunctional intracellular protein, plays an important role in regulating cell survival and antioxidant stress. Here, we wondered whether DJ‐1 overexpression attenuates simulated ischemia/reperfusion (sI/R)‐induced oxidative stress. A rat cDNA encoding DJ‐1 was inserted into a mammalian expression vector. After introduction of this construct into H9c2 myocytes, stable clones were obtained. Western blot analysis of the derived clones showed a 2.6‐fold increase in DJ‐1 protein expressing. Subsequently, the DJ‐1 gene‐transfected and control H9c2 cells were subjected to sI/R, and then cell viability, lactate dehydrogenase, malondialdehyde, intracellular ROS and antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were measured appropriately. The results showed that stable overexpression of DJ‐1 efficiently attenuated sI/R‐induced viability loss and lactate dehydrogenase leakage. Additionally, stable overexpression of DJ‐1 inhibited sI/R‐induced the elevation of ROS and MDA contents followed by the increase of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) activities and expression. Our data indicate that overexpression of DJ‐1 attenuates ROS generation, enhances the cellular antioxidant capacity and prevents sI/R‐induced oxidative stress, revealing a novel mechanism of cardioprotection. Importantly, DJ‐1 overexpression may be an important part of a protective strategy against ischemia/reperfusion injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Aerobic cells are subjected to damaging reactive oxygen species (ROS) as a consequence of oxidative metabolism and/or exposure to environmental toxins. Antioxidants limit this damage, yet peroxidative events occur when oxidant stress increases. This arises due to increased radical formation or decreased antioxidative defenses. The two-step enzymatic antioxidant pathway limits damage to important biomolecules by neutralising superoxides to water. However, an imbalance in this pathway (increased first-step antioxidants relative to second-step antioxidants) has been proposed as etiological in numerous pathologies. This review presents evidence that a shift in favor of hydrogen peroxide and/or lipid peroxides has pathophysiological consequences. The involvement of antioxidant genes in the regulation of redox status, and ultimately cellular homeostasis, is explored in murine transgenic and knockout models. The investigations of Sod1 transgenic cell-lines and mice, as well as Gpx1 knockout mice (both models favor H(2)O(2) accumulation), are presented. Although in most instances accumulation of H(2)O(2) affects cellular function and leads to exacerbated pathology, this is not always the case. This review highlights those instances where, for example, increased Sod1 levels are beneficial, and indicates a role for superoxide radicals in pathogenesis. Studies of Gpx1 knockout mice (an important second-step antioxidant) lead us to conclude that Gpx1 functions as the primary protection against acute oxidative stress, particularly in neuropathological situations such as stroke and cold-induced head trauma, where high levels of ROS occur during reperfusion or in response to injury. In summary, these studies clearly highlight the importance of limiting ROS-induced cellular damage by maintaining a balanced enzymatic antioxidant pathway.  相似文献   

15.
We have elucidated the cytoprotective effect of annphenone (2,4-dihyroxy-6-methoxy-acetophenone 4-O-beta-d-glucopyranoside) against oxidative stress-induced apoptosis. Annphenone scavenged intracellular reactive oxygen species (ROS) and increased antioxidant enzyme activities. It thereby prevented lipid peroxidation and DNA damage, which was demonstrated by the inhibition of the formation of thiobarbituric acid reactive substance (TBARS), inhibition of the comet tail and decreased phospho-H2A.X expression. Annphenone protected Chinese hamster lung fibroblast (V79-4) cells from cell death via the inhibition of apoptosis induced by hydrogen peroxide (H(2)O(2)), as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population and inhibited mitochondrial membrane potential (Deltapsi) loss. Taken together, these findings suggest that annphenone exhibits antioxidant properties by inhibiting ROS generation and thus protecting cells from H(2)O(2)-induced cell damage.  相似文献   

16.
Pyelonephritis is an infectious disease, and common treatment strategy is based on antibiotic therapy directed at the elimination of a pathogen. However, urinary tract infections are accompanied by inflammation and oxidative stress, which are major damaging factors, and therefore can serve as a target for therapeutic intervention. The goal of this study was to clarify the role of the mitochondrial reactive oxygen species (ROS) in kidney cell damage under experimental pyelonephritis. We investigated the mechanisms of inflammation and the role of mitochondria and oxidative stress in inflammation in kidney tissue using in vivo and in vitro models of pyelonephritis. We observed the development of oxidative stress in renal tubular epithelium in vitro, and resulting apoptotic cell death. This oxidative damage was caused by the leukocytes producing ROS after interaction with bacterial antigens. The essential role of mitochondria-mediated oxidative stress was confirmed using an experimental model of pyelonephritis in vivo. We revealed increased levels of malonic dialdehyde in kidneys of rats with experimental pyelonephritis that pointed to lipid peroxidation. Besides, high ROS levels were observed in blood leukocytes from rats with pyelonephritis. The mitochondria-targeted antioxidant SkQ1 significantly reduced the signs of kidney inflammatory injury, in particular the infiltration of neutrophils. Summarizing the data obtained, we assume the importance of mitochondrial ROS in different phases of acute pyelonephritis onset. Protection of kidney cells from infection-mediated damage can be attained by the induction of tolerance mechanisms and by antioxidant treatment.  相似文献   

17.
目的:研究连翘酯苷A(Forsythiaside A,FA)对缺血再灌注引起的脑细胞损伤的保护作用及机制。方法:采用PC12细胞缺氧再复氧模型(OGD/R),细胞分组为正常组,模型组,FA处理组(1.25, 2.5和5μmol/L),测定细胞存活率、凋亡率、ROS、MDA以及抗氧化酶水平。采用Western blotting测定对Akt和Nrf2蛋白的影响,采用Akt抑制LY294002验证FA的调节作用。结果:FA能够有效抑制OGD/R引起的存活率下降和凋亡率增加,同时可以抑制细胞内ROS和MDA水平,升高细胞内抗氧化酶(SOD、GSH、GSH-Px和CAT)水平。FA处理能够增加Akt磷酸化水平以及Nrf2和其下游蛋白HO-1蛋白表达。进一步采用LY294002验证发现FA通过Akt调控Nrf2发挥抗氧化作用从而抑制脑细胞损伤。结论:FA能够抑制缺血再灌注引起的脑细胞损伤,其作用机制可能是通过促进Akt磷酸化,调控Nrf2下游抗氧蛋白酶表达,抑制氧化应激,从而保护脑细胞。  相似文献   

18.
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.  相似文献   

19.
Naringin (NG), a flavonoid in grapefruit and citrus, has been reported to exhibit antioxidant effects and pharmacological actions. Recently, we have reported that NG suppressed the cytotoxicity and apoptosis induced by H(2)O(2), a typical pro-oxidant, in mouse leukemia P388 cells. Cytosine arabinoside (1-beta-d-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite chemotherapeutic drug used for acute leukemia. It has been suggested that Ara-C-induced cytotoxicity is caused by apoptosis, which is mediated by reactive oxygen species (ROS). In this study, we examined the effect of NG on the cytotoxicity and apoptosis in mouse leukemia P388 cells treated with Ara-C. Ara-C caused cytotoxicity in a concentration and time-dependent manner in the cells. N-Acetyl-L-cysteine (NAC), cystamine (CysA) or a reduced form of glutathione (GSH), typical antioxidants significantly blocked Ara-C-induced cytotoxicity. Similarly, Ara-C-induced cell death was completely prevented by NG. NG strongly reduced ROS production caused by Ara-C in the cells. NG slightly increased the activities of antioxidant enzymes, catalase and glutathione peroxidase. Ara-C caused apoptosis with nuclear morphological change and DNA fragmentation. NG remarkably attenuated the Ara-C-induced apoptosis. NG completely blocked the DNA damage caused by Ara-C treatment at 6 h using the Comet assay. Our data suggest that NG reduces Ara-C-induced oxidative stress through both an inhibition of the generation of ROS production and an increase in antioxidant enzyme activities. Consequently, NG blocked apoptosis caused by Ara-C-induced oxidative stress, resulting in the inhibition of the cytotoxicity of Ara-C.  相似文献   

20.
Benzene is an occupational toxicant and an environmental pollutant that is able to induce the production of reactive oxygen species (ROS), causing oxidative stress and damages of the macromolecules in target cells, such as the hematopoietic stem cells. We had previously found that embryonic yolk sac hematopoietic stem cells (YS-HSCs) are more sensitive to benzene toxicity than the adult bone marrow hematopoietic stem cells, and that nuclear factor-erythroid-2-related factor 2 (Nrf2) is the major regulator of cytoprotective responses to oxidative stress. In the present report, we investigated the effect of PKM2 and Nrf2-ARE pathway on the cellular antioxidant response to oxidative stress induced by benzene metabolite benzoquinone (BQ) in YS-HSC isolated from embryonic yolk sac and enriched by magnetic-activated cell sorting (MACS). Treatment of the YS-HSC with various concentrations of BQ for 6 hours induces ROS generation in a dose-dependent manner. Additional tests showed that BQ is also capable of inducing expression of NADPH oxidase1 (NOX1), and several other antioxidant enzymes or drug-metabolizing enzymes, including heme oxygenase 1 (HMOX1), superoxide dismutase (SOD), catalase and NAD(P)H dehydrogenase quinone 1 (NQO1). Concomitantly, only the expression of PKM2 protein was decreased by the treatment of BQ but not the PKM2 mRNA, which suggested that BQ may induce PKM2 degradation. Pretreatment of the cells with antioxidant N-acetylcysteine (NAC) decreased ROS generation and prevented BQ-induced PKM2 degradation, suggesting involvement of ROS in the PKM2 protein degradation in cellular response to BQ. These findings suggest that BQ is a potent inducer of ROS generation and the subsequent antioxidant responses of the YS-HSC. The accumulated ROS may attenuate the expression of PKM2, a key regulator of the pyruvate metabolism and glycolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号