首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Exteriorized phosphatidylserine (PS) residues in apoptotic cells trigger rapid phagocytosis by macrophage scavenger receptor pathways. Mimicking apoptosis with liposomes containing PS may represent an attractive approach for molecular imaging of atherosclerosis. We investigated the utility of paramagnetic gadolinium liposomes enriched with PS (Gd-PS) in imaging atherosclerotic plaque. Gd-PS-containing Gd-conjugated lipids, fluorescent rhodamine, and PS were prepared and characterized. Cellular uptake in RAW macrophages (fluorescent uptake of rhodamine) was studied on a fluorescence plate reader, while Gd-PS-induced alteration in T1 relaxivity was evaluated using a 1.5 T MRI scanner. RAW cells demonstrate PS-dependent uptake of across a range of concentrations (2, 6, 12, and 20%) in comparison to control liposomes with no PS (0%). In vivo performance of Gd-PS was evaluated in the ApoE−/− mouse model by collection of serial T1 weighted gradient echo MR images using an 11.7 T MRI system and revealed rapid and significant enhancement of the aortic wall that was seen for at least 4 h after injection. Gd-PS-enriched liposomes enhance atherosclerotic plaque and colocalize with macrophages in experimental atherosclerosis.  相似文献   

2.
In the present study, we sought to investigate the effects of emotional and physiological stress on plaque instability in atherosclerosis. We used different stress-treated apolipoprotein E (ApoE)-deficient mice, which have been shown to spontaneously develop atherosclerosis with features similar to those seen in humans, as an animal model. Morphology study showed that emotional stress (ES) obviously promoted the development of atherosclerotic plaques and plaque instability evidenced by significantly increasing plaque size, plaque-to-surface ratio and plaque calcification, and enhancing the frequency of large necrotic core and medial erosion compared with control ApoE−/− mice (P < 0.01). Physiological stress (PS) treatment alone did not affect the plaque stability compared with control ApoE−/− mice (P > 0.05). However, the combination of ES and PS treatment (CS) initiated much stronger plaque instability compared with ES treatment alone (P < 0.01), increased the frequency of thin fibrous caps, and even triggered plaque rupture and buried fibrous cap. Immunohistochemical analysis indicated that both ES and CS treatment led to an increase in the accumulation of macrophages and T cells and a decrease of smooth muscle cells, reflecting an unstable atherosclerotic plaque phenotype, in the atherosclerotic lesions in ApoE−/− mice. PS alone did not affect plaque cellular components. Similarly, CS-mediated changes in atherosclerotic plaque composition were stronger than that caused by ES alone (P < 0.01). Taken together, ES treatment alone is sufficient to promote plaque instability. PS alone does not affect atherosclerotic plaque development, but can potentiate ES-mediated plaque destabilization.  相似文献   

3.
Liposome-Mediated transfer of bacterial RNA into carrot protoplasts   总被引:1,自引:0,他引:1  
The uptake of liposome-encapsulated E. coli [3H]RNA by carrot (Daucus carota L.) protoplasts was examined. [3H]RNA extracted from protoplasts that had been incubated with [3H]RNA-containing, large, unilamellar lipid vesicles (liposomes) obtained by ether infusion, and examined by sucrose gradient centrifugation and formamide-polyacrylamide gel electrophoresis, appeared substantially degraded, with a total elimination of 23S RNA and a partial loss of 16S RNA. In contrast, no breakdown of the [3H]RNA was apparent in the liposomes after sequestration, even in the presence of externally added ribonuclease, or in the unfused liposomes remaining after incubation of protoplasts with liposomes. Thus, the degradation of the [3H]RNA extracted from the protoplasts must have occurred within the protoplasts and represents evidence for liposome-mediated RNA uptake. Naked RNA added to the protoplast culture was found to be totally degraded after incubation with the protoplasts. The uptake of liposome-sequestered RNA by protoplasts was demonstrated to be a function both of the lipid composition of the liposomal membrane and of the temperature of incubation of the liposomeprotoplast mixture. Furthermore, the mode of this uptake (fusion versus endocytosis) could be manipulated by adjusting the cholesterol content of the liposomal membrane. The implications of the ability to insert RNA into protoplasts without degradation by extracellular nucleases are discussed.  相似文献   

4.
Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. Tumour necrosis factor ligand superfamily member 12 (TNFSF12) also known as TNF-related weak inducer of apoptosis (TWEAK) is a proinflammatory cytokine that participates in atherosclerotic plaque development, but its role in plaque stability remains unclear. Using two different approaches, genetic deletion of TNFSF12 and treatment with a TWEAK blocking mAb in atherosclerosis-prone mice, we have analysed the effect of TWEAK inhibition on atherosclerotic plaques progression and stability. Mice lacking both TNFSF12 and Apolipoprotein E (TNFSF12−/−ApoE−/−) exhibited a diminished atherosclerotic burden and lesion size in their aorta. Advanced atherosclerotic plaques of TNFSF12−/−ApoE−/− or anti-TWEAK treated mice exhibited an increase collagen/lipid and vascular smooth muscle cell/macrophage ratios compared with TNFSF12+/+ApoE−/− control mice, reflecting a more stable plaque phenotype. These changes are related with two different mechanisms, reduction of the inflammatory response (chemokines expression and secretion and nuclear factor kappa B activation) and decrease of metalloproteinase activity in atherosclerotic plaques of TNFSF12−/−ApoE−/−. A similar phenotype was observed with anti-TWEAK mAb treatment in TNFSF12+/+ApoE−/− mice. Brachiocephalic arteries were also examined since they exhibit additional features akin to human atherosclerotic plaques associated with instability and rupture. Features of greater plaque stability including augmented collagen/lipid ratio, reduced macrophage content, and less presence of lateral xanthomas, buried caps, medial erosion, intraplaque haemorrhage and calcium content were present in TNFSF12−/−ApoE−/− or anti-TWEAK treatment in TNFSF12+/+ApoE−/− mice. Overall, our data indicate that anti-TWEAK treatment has the capacity to diminish proinflamatory response associated with atherosclerotic plaque progression and to alter plaque morphology towards a stable phenotype.  相似文献   

5.
The vulnerable plaque is a key distinguishing feature of atherosclerotic lesions that can cause acute atherothrombotic vascular disease. This study was designed to explore the effect of autophagy on mitochondria‐mediated macrophage apoptosis and vulnerable plaques. Here, we generated the mouse model of vulnerable carotid plaque in ApoE?/? mice. Application of ApoE?/? mice with rapamycin (an autophagy inducer) inhibited necrotic core formation in vulnerable plaques by decreasing macrophage apoptosis. However, 3‐methyladenine (an autophagy inhibitor) promoted plaque vulnerability through deteriorating these indexes. To further explore the mechanism of autophagy on macrophage apoptosis, we used macrophage apoptosis model in vitro and found that 7‐ketocholesterol (7‐KC, one of the primary oxysterols in oxLDL) caused macrophage apoptosis with concomitant impairment of mitochondria, characterized by the impairment of mitochondrial ultrastructure, cytochrome c release, mitochondrial potential dissipation, mitochondrial fragmentation, excessive ROS generation and both caspase‐9 and caspase‐3 activation. Interestingly, such mitochondrial apoptotic responses were ameliorated by autophagy activator, but exacerbated by autophagy inhibitor. Finally, we found that MAPK‐NF‐κB signalling pathway was involved in autophagy modulation of 7‐KC–induced macrophage apoptosis. So, we provide strong evidence for the potential therapeutic benefit of macrophage autophagy in regulating mitochondria‐mediated apoptosis and inhibiting necrotic core formation in vulnerable plaques.  相似文献   

6.
Acute coronary syndrome (ACS) is characterized by atherosclerotic plaque rupture with a high incidence of recurrent ischemic events. Several microRNAs are found to be aberrantly expressed in atherosclerotic plaques. This study aims to investigate the effects of microRNA-9 (miR-9) on vulnerable atherosclerotic plaque and vascular remodeling in ACS and underlying mechanisms. Microarray-based gene expression profiling was used to identify differentially expressed genes related to ACS and regulatory miRNAs. Oxidized low-density lipoprotein (lectin-like) receptor 1 (OLR1) was identified to be aberrantly activated in ACS and regulated by miR-9. OLR1 was verified as a target gene of miR-9 by bioinformatics prediction and dual luciferase reporter gene assay. The atherosclerotic models were induced in ApoE−/− mice, in which the agomir or antagomir of miR-9, or small interfering RNA (siRNA) against OLR1 were separately introduced. Serum lipid levels and expression of vascular remodeling and inflammatory response-related factors were determined, respectively. On the basis of the obtained results, in the atherosclerosis mice treated with the agomir of miR-9 and siRNA against OLR1, the p38-mitogen-activated protein kinase (p38MAPK) pathway was inhibited; levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor were reduced, but the high-density lipoprotein cholesterol level was increased, along with decreased vulnerable atherosclerotic plaque area and enhanced vascular remodeling. Taken together, these findings suggested an inhibitory role miR-9 acts in the formation of vulnerable atherosclerotic plaques in ACS mice, along with a promoted vascular remodeling, via a negative feedback regulation of OLR1-mediated p38MAPK pathway.  相似文献   

7.
Endothelial injuries, including cell pyroptosis, are ongoing inflammatory processes with key roles in atherosclerosis development. Our previous report showed that the chemokine CXCL12 and its receptor CXCR7 are associated with the proliferation and angiogenesis of endothelial cells. Nevertheless, the mechanism underlying these effects on atherosclerotic lesions, especially on endothelial dysfunction, remains unknown. Here, we demonstrated that CXCR7 was upregulated in human carotid atherosclerotic plaques, apolipoprotein E knockout (ApoE?/?) mice fed with a high‐fat diet (HFD), and oxidized lipopolysaccharide‐treated (ox‐LDL) human umbilical vein endothelial cells (HUVECs). Further, the activation of CXCR7 reversed ox‐LDL‐induced HUVEC dysfunction, such as migration, tube formation, and cell pyroptosis; all of these protective effects were alleviated by inhibition of CXCR7. The NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasomes were also elevated in human carotid atherosclerotic plaques, ApoE?/? mice fed with HFD, and ox‐LDL‐injured HUVECs by regulation of caspase‐1 and interleukin (IL)‐1β expression. The activation of CXCR7 by TC14012 led to a decrease in atherosclerotic lesions in ApoE?/? mice fed with HFD. TC14012 also inhibited the expression of the NLRP3 inflammasome signaling pathway in vivo. In conclusion, our study suggests that CXCR7 plays an important role in regulating NLRP3 inflammasome‐modulated pyroptosis in HUVECs, providing a potential novel therapy for atherosclerosis.  相似文献   

8.
目的:探讨免疫相关GTP酶1(Irgm 1)对小鼠血管动脉粥样硬化(AS)斑块形成的影响。方法:高脂饲料喂养野生型(WT)、ApoE~(-/-)Irgm 1~(+/+)和ApoE~(-/-)Irgm1~(+/-)小鼠3个月,建立AS模型;取小鼠主动脉弓,免疫荧光染色方法观察WT和ApoE~(-/-)Irgm 1~(+/+)小鼠血管AS斑块中Irgm 1的表达情况及部位;Western blot方法检测WT和ApoE~(-/-)Irgm 1~(+/+)小鼠血管AS斑块中Irgm 1蛋白表达情况;Q-PCR方法检测WT和ApoE~(-/-)Irgm 1~(+/+)小鼠血管AS斑块中Irgm 1 m RNA表达情况;油红O染色观察ApoE~(-/-)Irgm1~(+/+)和ApoE~(-/-)Irgm1~(+/-)小鼠血管AS斑块形成情况;结果:与WT组相比,ApoE~(-/-)Irgm 1~(+/+)组小鼠主动脉弓AS斑块中Irgm 1+细胞明显增多,Irgm 1+细胞主要位于血管AS斑块的表面;与WT组相比,ApoE~(-/-)Irgm 1~(+/+)组小鼠血管AS斑块中Irgm 1蛋白表达显著增多(P0.001),Irgm 1 m RNA表达显著增多(P0.01);与ApoE~(-/-)Irgm1~(+/-)组相比,ApoE~(-/-)Irgm1~(+/+)组小鼠主动脉弓AS斑块面积显著增大(P0.01);结论:Irgm 1能够促进血管AS斑块的形成。  相似文献   

9.
Recent studies have highlighted the relevance of viral nucleic acid immunorecognition by pattern recognition receptors in atherogenesis. Melanoma differentiation associated gene 5 (MDA‐5) belongs to the intracellular retinoic acid inducible gene‐I like receptors and its activation promotes pro‐inflammatory mechanisms. Here, we studied the effect of MDA‐5 stimulation in vascular biology. To gain insights into MDA‐5 dependent effects on endothelial function, cultured human coronary artery endothelial cells (HCAEC) were transfected with the synthetic MDA‐5 agonist polyIC (long double‐stranded RNA). Human coronary endothelial cell expressed MDA‐5 and reacted with receptor up‐regulation upon stimulation. Reactive oxygen species formation, apoptosis and the release of pro‐inflammatory cytokines was enhanced, whereas migration was significantly reduced in response to MDA‐5 stimulation. To test these effects in vivo, wild‐type mice were transfected with 32.5 μg polyIC/JetPEI or polyA/JetPEI as control every other day for 7 days. In polyIC‐treated wild‐type mice, endothelium‐dependent vasodilation and re‐endothelialization was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticles and circulating endothelial progenitor cells significantly elevated compared to controls. Importantly, these effects could be abrogated by MDA‐5 deficiency in vivo. Finally, chronic MDA‐5 stimulation in Apolipoprotein E/toll‐like receptor 3 (TLR3) doubledeficient (ApoE?/?/TLR3?/?) mice‐enhanced atherosclerotic plaque formation. This study demonstrates that MDA‐5 stimulation leads to endothelial dysfunction, and has the potential to aggravate atherosclerotic plaque burden in murine atherosclerosis. Thus, the spectrum of relevant innate immune receptors in vascular diseases and atherogenesis might not be restricted to TLRs but also encompasses the group of RLRs including MDA‐5.  相似文献   

10.
Previous evidence has indicated a beneficial role for aldehyde dehydrogenase 2 (ALDH2) in suppressing atherosclerotic plaque progression and instability. However, the underlying mechanism remains somewhat elusive. This study was designed to examine the effect of ALDH2 deficiency on high-cholesterol diet-induced atherosclerotic plaque progression and plaque vulnerability in atherosclerosis-prone ApoE knockout (ApoE?/?) mice with a focus on foam cell formation in macrophages and senescence of vascular smooth muscle cells (VSMCs). Serum lipid profile, plaque progression, and plaque vulnerability were examined in ApoE?/? and ALDH2/ApoE double knockout (ALDH2?/?ApoE?/?) mice after high-cholesterol diet intake for 8 weeks. ALDH2 deficiency increased the serum levels of triglycerides while it decreased levels of total cholesterol and high-density lipoprotein cholesterol. Unexpectedly, ALDH2 deficiency reduced the plaque area by 58.9% and 37.5% in aorta and aortic sinus, respectively. Plaque instability was aggravated by ALDH2 deficiency along with the increased necrotic core size, decreased collagen content, thinner fibrous cap area, decreased VSMC content, and increased macrophage content. In atherosclerotic lesions, ALDH2 protein was located in both macrophages and VSMCs. Further results revealed downregulated ALDH2 expression in aorta of aged ApoE?/? mice compared with young mice. However, in vitro study suggested that ALDH2 expression was upregulated in bone marrow-derived macrophages (BMDMs) with an opposite effect in VSMCs following 80 μg/ml oxidized low-density lipoprotein (oxLDL) treatment. Interestingly, ALDH2 deficiency displayed little effect in oxLDL-induced foam cell formation from BMDMs, while ALDH2 knockdown by siRNA and ALDH2 overexpression by lentivirus infection promoted and retarded oxLDL-induced VSMC senescence, respectively. Mechanistically, ALDH2 mitigated oxLDL-induced overproduction of mitochondrial reactive oxygen species (mROS) and activation of downstream p53/p21/p16 pathway. Clearance of mROS by mitoTEMPO significantly reversed the promotive effect of ALDH2 knockdown on VSMC senescence. Taken together, our data revealed that ALDH2 deficiency suppressed atherosclerotic plaque area while facilitating plaque instability possibly through accelerating mROS-mediated VSMC senescence.This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.  相似文献   

11.
The interaction with liver cells of liposomes containing different mol fractions of phosphatidylserine was investigated in vivo and in vitro. Increasing the amount of liposomal phosphatidylserine from 10 to 30 mol% leads to a faster blood disappearance of the liposomes. Within the liver, which is mainly responsible for this elimination, these liposomes are only taken up by the hepatocytes and Kupffer cells. By contrast, sinusoidal endothelial cells, in vitro, do bind and internalize liposomes containing >/=30% phosphatidylserine at least as actively as Kupffer cells. The uptake by endothelial and Kupffer cells is inhibited by poly(inosinic acid) and other anionic macromolecules, suggesting the involvement of scavenger receptors. The lack of liposome uptake by endothelial cells under in vivo conditions can be attributed to plasma effects since addition of various sera caused severe reduction of in vitro uptake of liposomes. In vivo the phosphatidylserine head groups may be masked by plasma proteins adsorbed to the liposomal surface, thus preventing recognition by receptors, which are intrinsically able to recognize phosphatidylserine.  相似文献   

12.
Little is known about how hypercholesterolaemia affects Ca2+ signalling in the vasculature of ApoE−/− mice, a model of atherosclerosis. Our objectives were therefore to determine (i) if hypercholesterolaemia alters Ca2+ signalling in aortic endothelial cells before overt atherosclerotic lesions occur, (ii) how Ca2+ signals are affected in older plaque-containing mice, and (iii) whether Ca2+ signalling changes were translated into contractility differences. Using confocal microscopy we found agonist-specific Ca2+ changes in endothelial cells. ATP responses were unchanged in ApoE−/− cells and methyl-β-cyclodextrin, which lowers cholesterol, was without effect. In contrast, Ca2+ signals to carbachol were significantly increased in ApoE−/− cells, an effect methyl-β-cyclodextrin reversed. Ca2+ signals were more oscillatory and store-operated Ca2+ entry decreased as mice aged and plaques formed. Despite clearly increased Ca2+ signals, aortic rings pre-contracted with phenylephrine had impaired relaxation to carbachol. This functional deficit increased with age, was not related to ROS generation, and could be partially rescued by methyl-β-cyclodextrin. In conclusion, carbachol-induced calcium signalling and handling are significantly altered in endothelial cells of ApoE−/− mice before plaque development. We speculate that reduction in store-operated Ca2+ entry may result in less efficient activation of eNOS and thus explain the reduced relaxatory response to CCh, despite the enhanced Ca2+ response.  相似文献   

13.
14.
As the cardiovascular system ages, it becomes more vulnerable to the effects of oxidative stress and inflammation. The aging process, along with external factors such as radiation exposure and lifestyle, induces vascular senescence and accelerates atherosclerotic plaque accumulation. Expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (Nox1), which produces superoxide, is associated with senescence in vascular smooth muscle cells in vitro and atherosclerosis in ApoE−/− mice in vivo. However, it is unknown whether Nox1 could be down-regulated by nutritional interventions aimed to reduce atherosclerosis. Here we study the effect of blackberry supplementation in Nox1 expression and atherosclerosis. Four-month-old ApoE−/− male and female mice were fed low-fat, high-fat or high-fat supplemented with 2% freeze-dried blackberry powder diets for 5 weeks. Analysis of the aorta showed that diet supplemented with blackberry significantly decreased plaque accumulation, senescence associated-β-galactosidase and Nox1 expression in the aorta of male but not female mice. The lipid profile was unchanged by blackberry in both female and male animals. Thus, the known role of Nox1 in atherosclerosis suggests that the atheroprotective effect of blackberry is mediated by Nox1 down-regulation in male mice and that Nox1 is regulated in a gender-dependent manner in females.  相似文献   

15.
Supramolecular structures, particularly micelles and liposomes equipped with uptake-mediating address compounds, have attracted much attention as pharmaceutical formulations. Their development requires an understanding of the mechanism by which the carrier systems interact with and translocate into the target cells. We developed an apolipoprotein E-derived peptide, called A2, that efficiently translocates across cell membranes. Upon coupling of two palmitoyl chains (P2), the highly cationic sequence acquires detergent-like properties such as a strong tendency to self-associate and the ability to integrate into lipid bilayers. Confocal laser scanning microscopy and fluorescence activated cell sorting were used to compare the internalization of the fluorescence-labeled monomeric A2 with the uptake of the colloidal P2A2 micelles and P2A2-tagged liposomes into endothelial cells of blood vessels. Specific inhibitors of endocytosis were used to identify the underlying mechanisms. b.End3 and BAEC cells as example of endothelial cells of small capillaries and large vascular vessels, respectively, were examined. The uptake of monomeric A2 was characterized by poor cellular selectivity. A2 was efficiently internalized into both cell lines via at least two different mechanisms. Besides an endocytotic uptake route, a second passive pathway exists, that leads to a rapid distribution of A2 within the cytoplasm. Also liposomes tagged with P2A2 were non-selectively internalized into both b.End3 and BAEC cells. Their nonselective uptake was mediated by clathrin- and caveolin-independent endocytosis. In contrast, micellar P2A2 entered b.End3 cells via clathrin-mediated endocytosis, while no uptake of P2A2 into BAEC cells was observed. In conclusion, the specific clathrin-mediated uptake mode of P2A2 micelles might provide the basis for a blood brain barrier-specific targeting.  相似文献   

16.
Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.  相似文献   

17.
Interleukin (IL)-35 is a newly identified immune negative molecule which is secreted by CD4+Foxp3+ T regulatory cells (Tregs) and contributes to their suppressive capacity. Early data have shown that IL-35 inhibits development of several autoimmune diseases. However, the role of IL-35 in atherosclerosis, a lipid-driven chronic inflammatory disease in arterial wall, remains to be investigated. Here, we found that IL-35 was involved in atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice. ApoE−/− mice with established atherosclerotic lesion displayed a lower level of IL-35 compared to age-matched wild type C57BL/6 mice without plaque. However, IL-35 expression increased significantly in ApoE−/− mice with attenuated plaque. More importantly, we found that modulation of ER stress treated by chemical chaperone, 4-Phenyl butyric acid (PBA) in vivo, mainly upregulated immune negative regulating molecule IL-35, as well as IL-10 and Foxp3, accompanied by increased Tregs. However, no obvious impact on pro-inflammatory molecules such as TNF-α, IFN-γ, IL-17 and IL-23 was observed, which provides new insight into the benefit of ER stress recovery from attenuated plaque. Our results suggest that IL-35 might have a potential value for atherosclerotic therapy.  相似文献   

18.
Different glycosides were grafted on the surface of liposomes containing 125I-labelled γ-globulin by two ways: (1) by using glycolipid and (2) by covalent coupling of p-aminophenyl-d-glycosides to phosphatidylethanolamine liposomes using glutaraldehyde. The distribution of 125I-labelled γ-globulin was determined in mouse tissues from 5–60 min after a single injection of these liposomes. The liver uptake of encapsulated 125I-labelled γ-globulin was highest from liposomes having galactose and mannose on the surface. Competition experiments and cross-inhibition studies indicate that this uptake are mediated by specific recognition of the surface galactose and mannose residues of liposomes by the receptors present on the plasma membrane of liver cells. Stearylamine-containing liposomes were found to be more efficient in mediating the uptake of 125I-labelled γ-globulin by the lung, whereas in the case of spleen, phosphatidylethanolamine liposomes were more efficient. The extent of uptake of 125I-labelled γ-globulin from all types of liposome decreases as the amount of given liposomes increases. The uptake of 125I-labelled γ-globulin from liposomes containing asialogangliosides depends upon the phospholipid/ glycolipid ratio. These experiments clearly demonstrate that enhanced liposome uptake by liver cells could be achieved by grafting galactose and mannose on the liposomal surface.  相似文献   

19.
Comparative Gene Identification-58 (CGI-58), as an adipose triglyceride lipase (ATGL) activator, strongly increases ATGL-mediated triglyceride (TG) catabolism. Previous studies have shown that CGI-58 affects intestinal cholesterol homeostasis independently of ATGL activity. Therefore, we hypothesized that CGI-58 was involved in macrophage cholesterol metabolism and consequently atherosclerotic lesion formation. Here, we generated macrophage-specific CGI-58 transgenic mice (Mac-CGI-58 Tg) using an SRA promoter, which was further mated with ApoE−/− mice to create litters of CGI-58 Tg/ApoE−/− mice. These CGI-58 Tg/ApoE−/− mice exhibited an anti-atherosclerosis phenotype compared with wild type (WT) controls (CGI-58 WT/ApoE−/−), illustrated by less plaque area in aortic roots. Moreover, macrophage-specific CGI-58 overexpression in mice resulted in up-regulated levels of plasma total cholesterol and HDL-cholesterol. Consequently, higher expression levels of PPARa, PPARγ, LXRα, ABCA1, and ABCG1 were detected in macrophages from CGI-58 Tg/ApoE−/− mice compared to CGI-58 WT/ApoE−/− counterparts, which were accompanied by elevated macrophage cholesterol efflux toward HDL and Apo A1. Nevertheless, serum levels of TNF-α and IL-6 were reduced by macrophage-specific CGI-58 overexpression. Finally, bone marrow (BM) transplantation experiments further revealed that ApoE−/− mice reconstituted with Mac-CGI-58 Tg BM cells (ApoE−/−/Tg-BM chimera) displayed a significant reduction of atherosclerosis lesions compared with control mice reconstituted with Mac-CGI-58 WT BM cells (ApoE−/−/WT-BM chimera). Collectively, these data strongly suggest that CGI-58 overexpression in macrophages may protect against atherosclerosis development in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号