首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.  相似文献   

3.
哺乳动物雷帕霉素靶蛋白(mTOR)是 PI3K/Akt/mTOR 等多种信号通路的下游分子,在细胞增殖、分化、转移和存活中发挥 重要作用,已成为癌症治疗的一个重要靶标。传统的 mTOR 抑制剂主要是雷帕霉素及其衍生物,能特异性抑制 mTORC1,但在部分癌 症临床治疗中未达到预期疗效,且易产生耐药性。第二代 mTOR 抑制剂即双重或多重 mTOR 抑制剂能与 mTOR 的催化位点竞争 ATP, 高度选择性地抑制 mTORC1 和 mTORC2,比单靶点 mTOR 抑制剂具有更大的治疗优势。此外,某些天然来源产物也具有对 mTOR 的 抑制作用,且毒性、副作用更小。综述近几年有关 mTOR 及其抑制剂在抗肿瘤方面的研究进展。  相似文献   

4.
The mammalian target of rapamycin complex 1 (mTORC1) links the control of mRNA translation, cell growth, and metabolism to diverse stimuli. Inappropriate activation of mTORC1 can lead to cancer. Phorbol esters are naturally occurring products that act as potent tumor promoters. They activate isoforms of protein kinase C (PKCs) and stimulate the oncogenic MEK/ERK signaling cascade. They also activate mTORC1 signaling. Previous work indicated that mTORC1 activation by the phorbol ester PMA (phorbol 12-myristate 13-acetate) depends upon PKCs and may involve MEK. However, the precise mechanism(s) through which they activate mTORC1 remains unclear. Recent studies have implicated both the ERKs and the ERK-activated 90-kDa ribosomal S6 kinases (p90(RSK)) in activating mTORC1 signaling via phosphorylation of TSC2 (a regulator of mTORC1) and/or the mTORC1 component raptor. However, the relative importance of each of these kinases and phosphorylation events for the activation of mTORC1 signaling is unknown. The recent availability of MEK (PD184352) and p90(RSK) (BI-D1870) inhibitors of improved specificity allowed us to address the roles of these protein kinases in controlling mTORC1 in a variety of human and rodent cell types. In parallel, we used specific shRNAs against p90(RSK1) and p90(RSK2) to further test their roles in regulating mTORC1 signaling. Our data indicate that p90(RSKs) are dispensable for the activation of mTORC1 signaling by phorbol esters in all cell types tested. Our data also reveal striking diversity in the requirements for MEK/ERK in the control of mTORC1 between different cell types, pointing to additional signaling connections between phorbol esters and mTORC1, which do not involve MEK/ERK. This study provides important information for the design of efficient strategies to combat the hyperactivation of mTORC1 signaling by oncogenic pathways.  相似文献   

5.
6.
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics.The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.  相似文献   

7.
Malignant conversion of BRAF‐ or NRAS‐mutated melanocytes into melanoma cells can be promoted by PI3′‐lipid signaling. However, the mechanism by which PI3′‐lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS‐ or BRAF‐mutated melanoma cells that co‐express mutationally activated PIK3CA, we explored the contribution of PI3′‐lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α‐selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single‐agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1‐mediated effects on ribosomal protein S6 and 4E‐BP1 phosphorylation in an AKT‐dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRASQ61H/PIK3CAH1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA‐mutated melanoma proliferation.  相似文献   

8.
9.
10.
mTORC1 and p53     
A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1). The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53 DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.  相似文献   

11.
The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and tuberin, the protein products of the tumor suppressors TSC1 and TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in centrosome duplication, mitotic progression, and cytokinesis, suggesting that the hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin deficient cells and LAM patient-derived specimens, and that this increase is rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor BI-2536 significantly decreased the viability and clonogenic survival of hamartin and tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the expression and protein levels of key autophagy genes and proteins and the protein levels of Bcl-2 family members, suggesting that PLK1 regulates both autophagic and apoptotic responses. Taken together, our data point toward a previously unrecognized role of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling, including TSC and LAM.  相似文献   

12.
The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and tuberin, the protein products of the tumor suppressors TSC1 and TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in centrosome duplication, mitotic progression, and cytokinesis, suggesting that the hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin deficient cells and LAM patient-derived specimens, and that this increase is rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor BI-2536 significantly decreased the viability and clonogenic survival of hamartin and tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the expression and protein levels of key autophagy genes and proteins and the protein levels of Bcl-2 family members, suggesting that PLK1 regulates both autophagic and apoptotic responses. Taken together, our data point toward a previously unrecognized role of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling, including TSC and LAM.  相似文献   

13.
New potent mTORC1/mTORC2 dual inhibitors, 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives, were obtained by optimizing functional groups on our previously reported PI3Kα inhibitor. All the target compounds were synthesized and structural optimization on the structure of the lead compound based on cytotoxic activity. The results showed that some of the target compounds exhibited moderate to high cytotoxic activity against cell line U87MG and PC-3. The activities against mTOR kinase were investigated and the compound 12q showed excellent activity with an IC50 value of 54 nM in the same level of the positive control BEZ235 with IC50 value of 55 nM under the same test conditions. The western blot and cell cycle results demonstrate that compound 12q is a candidate as an mTORC1/mTORC2 dual-target inhibitor. The theoretical calculations were also performed to better understanding the binding modes of the compound 12q in the mTOR active site.  相似文献   

14.
The 40S ribosomal S6 kinase 1 (S6K1) is a conserved serine/threonine protein kinase that belongs to the AGC family of protein kinases, which also includes Akt and many others. S6K1 is the principal kinase effector downstream of the mammalian target of rapamycin complex 1 (mTORC1). S6K1 is sensitive to a wide range of signaling inputs, including growth factors, amino acids, energy levels and hypoxia. S6K1 relays these signals to regulate a growing list of substrates and interacting proteins in control of oncogenic processes, such as cell growth and proliferation, cell survival and apoptosis and cell migration and invasion. Several lines of evidence suggest an important role for S6K1 in estrogen receptor (ER)-positive breast cancer. S6K1 directly phosphorylates and activates ERα. Furthermore, S6K1 expression is estrogenically regulated. Therefore, hyperactivation of mTORC1/S6K1 signaling may be closely related to ER-positive status in breast cancer and may be utilized as a marker for prognosis and a therapeutic target.  相似文献   

15.
Polo-like kinase 1 (PLK1) is frequently overexpressed in cancer, which correlates with poor prognosis. Therefore, we investigated PLK1 as therapeutic target using rhabdomyosarcoma (RMS) as a model. Here, we identify a novel synthetic lethal interaction of PLK1 inhibitors and microtubule-destabilizing drugs in preclinical RMS models and elucidate the underlying molecular mechanisms of this synergism. PLK1 inhibitors (i.e., BI 2536 and BI 6727) synergistically induce apoptosis together with microtubule-destabilizing drugs (i.e., vincristine (VCR), vinblastine (VBL) and vinorelbine (VNR)) in several RMS cell lines (combination index <0.9) including a patient-derived primary RMS culture. Importantly, PLK1 inhibitors and VCR cooperate to significantly suppress RMS growth in two in vivo models, including a mouse xenograft model, without causing additive toxicity. In addition, no toxicity was observed in non-malignant fibroblast or myoblast cultures. Mechanistically, BI 2536/VCR co-treatment triggers mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by BAX/BAK activation, production of reactive oxygen species (ROS) and activation of caspase-dependent or caspase-independent effector pathways. This conclusion is supported by data showing that BI 2536/VCR-induced apoptosis is significantly inhibited by preventing cells to enter mitosis, by overexpression of BCL-2 or a non-degradable MCL-1 mutant, by BAK knockdown, ROS scavengers, caspase inhibition or endonuclease G silencing. This identification of a novel synthetic lethality of PLK1 inhibitors and microtubule-destabilizing drugs has important implications for developing PLK1 inhibitor-based combination treatments.Treatment response critically depends on intact cell death programs in cancer cells. One of the best-characterized forms of programmed cell death is apoptosis.1 Engagement of the extrinsic (death receptor) or the intrinsic (mitochondrial) pathway of apoptosis eventually leads to activation of caspases, a family of enzymes that function as cell death effector molecules.1 Signaling via the mitochondrial pathway of apoptosis is tightly controlled by both antiapoptotic (BCL-2, BCL-XL, MCL-1) and proapoptotic (BAX, BAK) proteins of the BCL-2 family.2 Apoptosis normally eliminates cells with intolerable DNA damage or perturbations in cell cycle progression.3, 4 In cancer cells, however, antiapoptotic proteins are frequently expressed at high levels, contributing to evasion of apoptosis and treatment resistance.2Polo-like kinase 1 (PLK1) is a serine/threonine-specific kinase that is pivotal for progression through mitosis.5 Consistently, high expression of PLK1 correlates with increased proliferative potential and poor prognosis in many tumor entities.5 Thus, PLK1 has emerged as an attractive therapeutic target in oncology. In recent years, several PLK1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials.5 However, little is yet known on whether the antitumor activity of PLK1 inhibitors can be potentiated in rational combination regimens. Recently, overexpression of PLK1 has been documented in human tissue samples of rhabdomyosarcoma (RMS), the most frequent pediatric soft-tissue sarcoma, and was shown to correlate with reduced survival.6, 7, 8 Searching for new synthetic lethal drug interactions, we used RMS as a model to investigate PLK1 inhibitor-based combination therapies in this study.  相似文献   

16.
The PI3K/Akt/mTOR signal transduction pathway plays a central role in multiple myeloma (MM) disease progression and development of therapeutic resistance. mTORC1 inhibitors have shown limited efficacy in the clinic, largely attributed to the reactivation of Akt due to rapamycin induced mTORC2 activity. Here, we present promising anti-myeloma activity of MK-2206, a novel allosteric pan-Akt inhibitor, in MM cell lines and patient cells. MK-2206 was able to induce cytotoxicity and inhibit proliferation in all MM cell lines tested, albeit with significant heterogeneity that was highly dependent on basal pAkt levels. MK-2206 was able to inhibit proliferation of MM cells even when cultured with marrow stromal cells or tumor promoting cytokines. The induction of cytotoxicity was due to apoptosis, which at least partially was mediated by caspases. MK-2206 inhibited pAkt and its down-stream targets and up-regulated pErk in MM cells. Using MK-2206 in combination with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), or U0126 (MEK1/2 inhibitor), we show that Erk- mediated downstream activation of PI3K/Akt pathway results in resistance to Akt inhibition. These provide the basis for clinical evaluation of MK-2206 alone or in combination in MM and potential use of baseline pAkt and pErk as biomarkers for patient selection.  相似文献   

17.
The proliferation and migration of Retinal Pigment Epithelium cells resulting from an epithelial-mesenchymal transition plays a key role in proliferative vitreoretinopathy, which leads to retinal detachment and the loss of vision. In neurons, glutamate has been shown to activate the Ras/Raf/MEK/ERK cascade, which participates in the regulation of proliferation, differentiation, and survival processes. Although glutamate-stimulation and the activation of ERK1/2 by different stimuli have been shown to promote RPE cell proliferation, the signaling pathway(s) linking these effects has not been established. We analyzed the molecular mechanisms leading to glutamate-induced proliferation by determining ERK1/2 and CREB phoshporylation in chick RPE cells in primary culture and the human-derived RPE cell line ARPE-19. This study shows for the first time, that glutamate promotes RPE cell proliferation by activating two distinct signaling pathways linked to selective glutamate receptor subtypes. Results demonstrate that glutamate stimulates RPE cell proliferation as well as ERK and CREB phosphorylation. These effects were mimicked by the mGluR agonist ACPD and by NMDA, and were prevented by the respective receptor inhibitors MCPG and MK-801, indicating a cause-effect relationship between these processes. Whereas mGluR promoted proliferation by activating the MEK/ERK/CREB cascade, NMDA stimulated proliferation through the MEK-independent activation of Ca(2+)/calmodulin-dependent kinases. The blockage of both signaling pathways to proliferation by KN-62 suggests the involvement of CaMKs in the control of glutamate-induced proliferation at a common step, downstream of CREB, possibly the regulation of cell cycle progression. Based on these findings, the participation of glutamate in the development of PVR can be considered.  相似文献   

18.
The endocannabinoid system is known to regulate neural progenitor (NP) cell proliferation and neurogenesis. In particular, CB(2) cannabinoid receptors have been shown to promote NP proliferation. As CB(2) receptors are not expressed in differentiated neurons, CB(2)-selective agonists are promising candidates to manipulate NP proliferation and indirectly neurogenesis by overcoming the undesired psychoactive effects of neuronal CB(1) cannabinoid receptor activation. Here, by using NP cells, brain organotypic cultures, and in vivo animal models, we investigated the signal transduction mechanism involved in CB(2) receptor-induced NP cell proliferation and neurogenesis. Exposure of hippocampal HiB5 NP cells to the CB(2) receptor-selective agonist HU-308 led to the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, which, by inhibiting its downstream target p27Kip1, induced NP proliferation. Experiments conducted with the CB(2) receptor-selective antagonist SR144528, inhibitors of the PI3K/Akt/mTORC1 axis, and CB(2) receptor transient-transfection vector further supported that CB(2) receptors control NP cell proliferation via activation of mTORC1 signaling. Likewise, CB(2) receptor engagement induced cell proliferation in an mTORC1-dependent manner both in embryonic cortical slices and in adult hippocampal NPs. Thus, HU-308 increased ribosomal protein S6 phosphorylation and 5-bromo-2'-deoxyuridine incorporation in wild-type but not CB(2) receptor-deficient NPs of the mouse subgranular zone. Moreover, adult hippocampal NP proliferation induced by HU-308 and excitotoxicity was blocked by the mTORC1 inhibitor rapamycin. Altogether, these findings provide a mechanism of action and a rationale for the use of nonpsychotomimetic CB(2) receptor-selective ligands as a novel strategy for the control of NP cell proliferation and neurogenesis.  相似文献   

19.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

20.
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号