首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Relapse with drug-resistant disease is the main cause of death in MYCN-amplified neuroblastoma patients. MYCN-amplified neuroblastoma cells in vitro are characterized by a failure to arrest at the G?-S checkpoint after irradiation- or drug-induced DNA damage. We show that several MYCN-amplified cell lines harbor additional chromosomal aberrations targeting p53 and/or pRB pathway components, including CDK4/CCND1/MDM2 amplifications, p16INK4A/p14ARF deletions or TP53 mutations. Cells with these additional aberrations undergo significantly lower levels of cell death after doxorubicin treatment compared with MYCN-amplified cells, with no additional mutations in these pathways. In MYCN-amplified cells CDK4 expression is elevated, increasing the competition between CDK4 and CDK2 for binding p21. This results in insufficient p21 to inhibit CDK2, leading to high CDK4 and CDK2 kinase activity upon doxorubicin treatment. CDK4 inhibition by siRNAs, selective small compounds or p19INK4D overexpression partly restored G?-S arrest, delayed S-phase progression and reduced cell viability upon doxorubicin treatment. Our results suggest a specific function of p19INK4D, but not p16INK4A, in sensitizing MYCN-amplified cells with a functional p53 pathway to doxorubicin-induced cell death. In summary, the CDK4/cyclin D-pRB axis is altered in MYCN-amplified cells to evade a G?-S arrest after doxorubicin-induced DNA damage. Additional chromosomal aberrations affecting the p53-p21 and CDK4-pRB axes compound the effects of MYCN on the G? checkpoint and reduce sensitivity to cell death after doxorubicin treatment. CDK4 inhibition partly restores G?-S arrest and sensitizes cells to doxorubicin-mediated cell death in MYCN-amplified cells with an intact p53 pathway.  相似文献   

5.
6.
Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tumors. Since patients with MYCN-amplified neuroblastoma have a poor prognosis, targeting MYCN using small molecule inhibitors could represent a promising therapeutic approach. We have previously demonstrated that the small molecule 10058-F4, known to bind to the c-MYC bHLHZip dimerization domain and inhibiting the c-MYC/MAX interaction, also interferes with the MYCN/MAX dimerization in vitro and imparts anti-tumorigenic effects in neuroblastoma tumor models with MYCN overexpression. Our previous work also revealed that MYCN-inhibition leads to mitochondrial dysfunction resulting in accumulation of lipid droplets in neuroblastoma cells. To expand our understanding of how small molecules interfere with MYCN, we have now analyzed the direct binding of 10058-F4, as well as three of its analogs; #474, #764 and 10058-F4(7RH), one metabolite C-m/z 232, and a structurally unrelated c-MYC inhibitor 10074-G5, to the bHLHZip domain of MYCN. We also assessed their ability to induce apoptosis, neurite outgrowth and lipid accumulation in neuroblastoma cells. Interestingly, all c-MYC binding molecules tested also bind MYCN as assayed by surface plasmon resonance. Using a proximity ligation assay, we found reduced interaction between MYCN and MAX after treatment with all molecules except for the 10058-F4 metabolite C-m/z 232 and the non-binder 10058-F4(7RH). Importantly, 10074-G5 and 10058-F4 were the most efficient in inducing neuronal differentiation and lipid accumulation in MYCN-amplified neuroblastoma cells. Together our data demonstrate MYCN-binding properties for a selection of small molecules, and provide functional information that could be of importance for future development of targeted therapies against MYCN-amplified neuroblastoma.  相似文献   

7.
The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.  相似文献   

8.
9.
Neuroblastoma, an embryonal tumor arising from the sympathetic ganglia and adrenal medulla, is among the most intractable pediatric cancers. Although a variety of genetic changes have been identified in neuroblastoma, how they contribute to its pathogenesis remains largely unclear. Recent studies have identified alterations of the anaplastic lymphoma kinase (ALK) gene in neuroblastoma; ALK F1174L (a phenylalanine‐to‐leucine substitution at codon 1174) represents one of the most frequent of these somatic mutations, and is associated with amplification of the MYCN gene, the most reliable marker for the poor survival. We engineered the mouse Alk locus so that ALK F1174L is expressed by its endogenous promoter and can be induced in a spatiotemporally controlled fashion using Cre‐loxP system. Although expression of ALK F1174L resulted in enhanced proliferation of sympathetic ganglion progenitors and increased the size of the sympathetic ganglia, it was insufficient to cause neuroblastoma. However, lethal neuroblastoma frequently developed in mice co‐expressing ALK F1174L and MYCN, even in a genetic background where MYCN alone does not cause overt tumors. These data reveal that physiological expression of ALK F1174L significantly potentiates the oncogenic ability of MYCN in vivo. Our conditional mutant mice provide a valuable platform for investigating the pathogenesis of neuroblastoma.  相似文献   

10.
11.
High-risk neuroblastoma has a poor prognosis despite intense treatment, demonstrating the need for new therapeutic strategies. Here we evaluated the effects of rigosertib (ON-01910.Na) in preclinical models of high-risk neuroblastoma. Among several hundred cancer cell lines representing 24 tumor types, neuroblastoma was the most sensitive to rigosertib. Treatment of MYCN-amplified neuroblastoma organoids resulted in organoid disintegration, decreased cell viability, and increased apoptotic cell death. Neuroblastoma response to rigosertib involved G2M cell cycle arrest and decreased phosphorylation of AKT (Ser473) and ERK1/2 (Thr202/Tyr204). Rigosertib delayed tumor growth and prolonged survival of mice carrying neuroblastoma MYCN-amplified PDX tumors (median survival: 31 days, treated; 22 days, vehicle) accompanied with increased apoptosis in treated tumors. We further identified vincristine and rigosertib as a potential promising drug combination treatment. Our results show that rigosertib might be a useful therapeutic agent for MYCN-amplified neuroblastomas, especially in combination with existing agents.  相似文献   

12.
Highly malignant neuroblastoma tumors with MYCN amplification have been shown to downregulate the expression of the CD44 adhesion receptor. We have previously shown that MYCN amplified neuroblastoma cell lines either lack CD44 expression or express a nonfunctional, nonhyaluronic acid-binding CD44 receptor. By analysis of cells with manipulated expression of either CD44 or MYCN, we demonstrate that transfection of cells with a CD44 full-length cDNA construct produced a functional receptor in single copy MYCN cells and a nonfunctional CD44 receptor in MYCN amplified cells, similar to the CD44 receptor expressed by cells with enforced MYCN. Analysis of the in vivo growth properties of the transfectants revealed that the restoration of a functional CD44 receptor in nonamplified cells resulted in the suppression of in vivo cell growth, therefore linking the MYCN-related lack of hyaluronic acid-binding function of CD44 to the highly tumorigenic properties of a subset of neuroblastoma cells.  相似文献   

13.
Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17∼92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17∼92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17∼92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1) target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2) serve as a resource for identifying new molecular targets for treatment.  相似文献   

14.
15.
Neuroblastoma is a pediatric malignant tumor arising from the sympathetic nervous system. The patients with high-risk neuroblastomas frequently exhibit amplification and high expression of the MYCN gene, resulting in worse clinical outcomes. Vitamin K3 (VK3) is a synthetic VK-like compound that has been known to have antitumor activity against various types of cancers. In the present study, we have asked whether VK3 and its derivative, VK3-OH, could have the antitumor activity against neuroblastoma-derived cells. Based on our results, VK3-OH strongly inhibited cell proliferation and induced apoptotic cell death compared to VK3. Treatment of MYCN-driven neuroblastoma cells with VK3-OH potentiated tumor suppressor p53 accompanied by downregulation of anti-apoptotic Bcl-2 and Mcl-1. Interestingly, VK3-OH also suppressed the MYCN at mRNA and protein levels. Furthermore, we found downregulation of LIN28B following VK3-OH treatment in MYCN-amplified and overexpressed neuroblastoma cells. Collectively, our current findings strongly suggest that VK3-OH provides a potential therapeutic strategy for patients with MYCN-driven neuroblastomas.  相似文献   

16.
Proliferating cell nuclear antigen (PCNA), through its interaction with various proteins involved in DNA synthesis, cell cycle regulation, and DNA repair, plays a central role in maintaining genome stability. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was significantly expressed in a broad range of cancer cells and tumor tissues, but not in non-malignant cells. We found that the caPCNA-specific antigenic site lies between L126 and Y133, a region within the interconnector domain of PCNA that is known to be a major binding site for many of PCNA''s interacting proteins. We hypothesized that therapeutic agents targeting protein-protein interactions mediated through this region may confer differential toxicity to normal and malignant cells. To test this hypothesis, we designed a cell permeable peptide containing the PCNA L126-Y133 sequence. Here, we report that this peptide selectively kills human neuroblastoma cells, especially those with MYCN gene amplification, with much less toxicity to non-malignant human cells. Mechanistically, the peptide is able to block PCNA interactions in cancer cells. It interferes with DNA synthesis and homologous recombination-mediated double-stranded DNA break repair, resulting in S-phase arrest, accumulation of DNA damage, and enhanced sensitivity to cisplatin. These results demonstrate conceptually the utility of this peptide for treating neuroblastomas, particularly, the unfavorable MYCN-amplified tumors.  相似文献   

17.
We evaluated the expression of the inhibitor-of-apoptosis protein (IAP) livin (BIRC7) in 59 cases of neuroblastoma (NBL) by quantitative RT-PCR. We also examined the role of livin in protecting tumor cells from chemotherapy drugs. Livin expression varied significantly among tumors. High levels of expression were observed in 17 of 39 patients with advanced stages (stages 3 and 4) and 6 of 20 patients with localized stages (stages 1 and 2). Livin-transfected, MYCN-amplified NBL cells showed increased resistance to doxorubicin and etoposide. Conversely, livin knockdown with siRNA enhanced spontaneous and drug-induced apoptosis in NBL cells. Multivariate analysis of prognostic factors showed that high livin expression worsened prognosis for patients with MYCN-amplified tumors. Our data suggest that (i) livin is frequently expressed in NBL and protects tumor cells with amplified MYCN oncogene from genotoxic agents; (ii) the antiapoptotic effect of livin in NBL is blocked by siRNA; (iii) in the sample studied, high livin expression enhanced the adverse prognostic impact of MYCN amplification. These findings suggest that livin may contribute to drug resistance in NBL.  相似文献   

18.
19.
The pairing of sister chromatids in interphase facilitates error-free homologous recombination (HR). Sister chromatids are held together by cohesin, one of three Structural Maintenance of Chromosomes (SMC) complexes. In mitosis, chromosome condensation is controlled by another SMC complex, condensin, and the type II topoisomerase (Top2). In prophase, cohesin is stripped from chromosome arms, but remains at centromeres until anaphase, whereupon it is removed via proteolytic cleavage. The third SMC complex, Smc5/6, is generally described as a regulator of HR-mediated DNA repair. However, cohesin and condensin are also required for DNA repair, and HR genes are not essential for cell viability, but the SMC complexes are. Smc5/6 null mutants die in mitosis, and in fission yeast, Smc5/6 hypomorphs show lethal mitoses following genotoxic stress, or when combined with a Top2 mutant, top2-191. We found these mitotic defects are due to retention of cohesin on chromosome arms. We also show that Top2 functions in the cohesin cycle, and accumulating data suggests this is not related to its decatenation activity. Thus the SMC complexes and Top2 functionally interact, and any DNA repair function ascribed to Smc5/6 is likely a reflection of a more fundamental role in the regulation of chromosome structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号