首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
2.
The plant hormone auxin promotes cell expansion. Forty years ago, the acid growth theory was proposed, whereby auxin promotes proton efflux to acidify the apoplast and facilitate the uptake of solutes and water to drive plant cell expansion. However, the underlying molecular and genetic bases of this process remain unclear. We have previously shown that the SAUR19-24 subfamily of auxin-induced SMALL AUXIN UP-RNA (SAUR) genes promotes cell expansion. Here, we demonstrate that SAUR proteins provide a mechanistic link between auxin and plasma membrane H+-ATPases (PM H+-ATPases) in Arabidopsis thaliana. Plants overexpressing stabilized SAUR19 fusion proteins exhibit increased PM H+-ATPase activity, and the increased growth phenotypes conferred by SAUR19 overexpression are dependent upon normal PM H+-ATPase function. We find that SAUR19 stimulates PM H+-ATPase activity by promoting phosphorylation of the C-terminal autoinhibitory domain. Additionally, we identify a regulatory mechanism by which SAUR19 modulates PM H+-ATPase phosphorylation status. SAUR19 as well as additional SAUR proteins interact with the PP2C-D subfamily of type 2C protein phosphatases. We demonstrate that these phosphatases are inhibited upon SAUR binding, act antagonistically to SAURs in vivo, can physically interact with PM H+-ATPases, and negatively regulate PM H+-ATPase activity. Our findings provide a molecular framework for elucidating auxin-mediated control of plant cell expansion.  相似文献   

3.
Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)–induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H+-ATPase vha-a2 vha-a3 and vacuolar H+-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution.  相似文献   

4.
5.
Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species.The increasing problem of global land salinization (Flowers, 2004; Rengasamy, 2006) and its associated multibillion dollar losses in agricultural production require a better understanding of the key physiological mechanisms that confer salinity tolerance in crops. One effective way of gaining such knowledge comes from studying halophytes (Glenn et al., 1999; Flowers and Colmer, 2008; Shabala and Mackay, 2011).One of the prominent features of halophytes is their ability to efficiently sequester cytosolically toxic Na+ to the cell vacuole. The classic view is that this sequestration is achieved by tonoplast Na+/H+ antiporters (Barkla et al., 1995; Flowers and Colmer, 2008), a process energized by both vacuolar H+ pumps: ATPase (Ayala et al., 1996; Vera-Estrella et al., 1999; Wang et al., 2001) and pyrophosphatase (Parks et al., 2002; Vera-Estrella et al., 2005; Guo et al., 2006; Krebs et al., 2010). However, recent studies have added more complexity to the relationship between Na+/H+ antiporters and vacuolar Na+ sequestration, assigning a role to the transporter in the regulation of K+ and H+ homeostasis (for review, see Rodríguez-Rosales et al., 2009; Jiang et al., 2010; Bassil et al., 2011). Vacuolar Na+/H+ antiporters encoded by NHX genes have been shown to also act as K+/H+ antiporters, with a relatively weak selectivity between Na+ and K+. The Na+/K+ selectivity ratio, in turn, is regulated by vacuolar calmodulin in a pH- and Ca2+-dependent manner (Yamaguchi et al., 2005). Consequently, other transporters, in addition to and different from NHX, are likely to be involved in vacuolar Na+ sequestration. In addition, salt-induced up-regulation of Na+/H+ antiporter expression levels has been observed in leaves but not in roots (Cosentino et al., 2010), suggesting the importance of Na+ exclusion and intracellular sequestration, primarily in photosynthesizing cells. Thus, tissue- and species-specific differences in the respective mechanisms should be considered as well.Whatever the actual mechanisms are for intracellular Na+ sequestration, efficient Na+ pumping into vacuole is only one side of the coin. To confer salinity tolerance, toxic Na+ ions must be prevented from leaking back into the cytosol. Indeed, given the at least 4- to 5-fold concentration gradient between the vacuole and the cytosol (Shabala and Mackay, 2011) and a zero or slightly negative cytosol-to-vacuole voltage difference across the tonoplast, Na+ leakage from the vacuole is thermodynamically favorable. Thus, to avoid energy-consuming futile Na+ cycling between the cytosol and the vacuole, and to achieve efficient vacuolar sequestration of toxic Na+, passive tonoplast Na+ conductance has to be kept to an absolute minimum. This implies strict and efficient control over Na+-permeable tonoplast channels.Two major types of Na+-permeable channels are present in the tonoplast, the slow-activating (SV) and fast-activating (FV) vacuolar channels. The SV channel is permeable to both monovalent and divalent cations and is activated by cytosolic Ca2+ and positive vacuolar voltage (Hedrich and Neher, 1987; Ward and Schroeder, 1994; Pottosin et al., 1997, 2001). The FV channel is permeable for monovalent cations only, is activated by large voltages of either sign, and is inhibited by divalent cations from either side of the membrane (Tikhonova et al., 1997; Brüggemann et al., 1999a, 1999b). In Arabidopsis (Arabidopsis thaliana), SV channels are shown to be encoded by a TPC1 (for two-pore channel1) protein (Peiter et al., 2005; Pottosin and Schönknecht, 2007; Hedrich and Marten, 2011). Importantly, recent studies on mammalian two-pore channels have suggested that endolysosomal TPCs are, in fact, Na+-selective channels (Wang et al., 2012). In contrast, the molecular identity of FV channels remains elusive. Both SV and FV channels are ubiquitous and abundant (up to several copies per μm2) in plant tissues, including mesophyll cell vacuoles (Pottosin and Muñiz, 2002; Pottosin and Schönknecht, 2007). SV and FV channel activity is strongly controlled at physiologically attainable conditions (physiological tonoplast voltages and vacuolar and cytosolic divalent and polyvalent cation concentrations). Importantly, even with 0.1% to 1% of the total population of channels open at any one time, impressive monovalent cation currents in the range of tens of pA per vacuole can be conducted. This is equivalent to a current mediated by the whole vacuole population of H+ pumps (Hedrich et al., 1988). Thus, under saline conditions, SV and FV channel activity probably needs to be further reduced.Early attempts to unravel any dramatic differences between the properties of tonoplast cation channels in salt-tolerant and salt-sensitive plants did not yield a clear outcome. Ivashikina and Hedrich (2005) studied the voltage dependence of the SV channels in vacuoles from Arabidopsis cell culture and found that an increase in luminal Na+/K+ ratio, mimicking the accumulation of Na+ in vacuoles during salt stress, shifted the threshold for SV activation to positive potentials, reducing SV channel open probability under saline conditions. Maathuis and coworkers (1992) found significant SV channel activity in leaf vacuoles isolated from the extreme halophyte Suaeda maritima, even when plants were grown under high (200 mm) NaCl conditions. The estimated activity of the transporter at physiologically relevant cytosolic Ca2+ levels and relatively small transmembrane voltage differences was low. Thus, the authors suggested that, rather than possessing some specific salt-induced control over the SV channel, the transporter’s low activity would mean that even under highly saline conditions, it would consume only about 30% of the H+-ATPase-generated power. Further studies from this laboratory demonstrated that voltage gating, unitary conductance, and Na+/K+ selectivity (PK = PNa) of SV channels from roots of Plantago media (salt sensitive) and Plantago maritima (salt tolerant) were essentially the same (Maathuis and Prins, 1990). However, when both species were grown under saline conditions, the SV channel activity greatly diminished. Yet, based on the original data of this study, it is not possible to decipher whether the SV channel activity in the two species was the same or different under control conditions and whether it was a statistically significant difference between the salt-induced decrease in the open probability of SV channels between P. media and P. maritima. As for FV channels, we are not aware of a single study on their properties/expression in relation to the salt tolerance.While the total number of halophytic species is relatively small compared with glycophytes, it still amounts to at least several thousand species (Glenn et al., 1999; Flowers et al., 2010). Moreover, halophytes are present in about one-half of higher plant families (Flowers and Colmer, 2008). These species possess a wide range of anatomical and morphological features that may potentially enable their superior performance under saline conditions (Shabala and Mackay, 2011). Nonetheless, the extent to which the above considerations could be extrapolated to all halophytes remains to be assessed. In this work, we used quinoa (Chenopodium quinoa) mesophyll leaf vacuoles to address some of these issues. Quinoa is a facultative halophyte species that originates from the Andean region of South America and was domesticated for human consumption some 3,000 to 4,000 years ago. It can grow under extreme saline conditions with a soil electrical conductivity exceeding 40 dS m−1, approximately 500 mm NaCl (Jacobsen et al., 2003; Razzaghi et al., 2011). Optimal plant growth is usually observed at NaCl concentrations of around 100 mm (Hariadi et al., 2011), but this may be genotype specific (Adolf et al., 2012). Quinoa possesses some degree of leaf succulence as well as epidermal bladder cells (EBC), so it has the potential to employ two different sequestration strategies for cytosolic Na+ exclusion: internal (e.g. vacuolar sequestration) and external (sequestration in EBC). This makes quinoa an excellent model species to investigate the role of vacuolar Na+ sequestration in the overall salinity tolerance in this crop plant as well as to determine the contribution of SV and FV channels in this process. Here, we report a highly significant difference in SV and FV channel activity between old and young leaves of quinoa plants, a difference that is further enhanced under saline conditions. We conclude that the ability of quinoa plants to control ion leak via SV and FV tonoplast channels is essential for conferring salinity tolerance in this species. The possible implications of these findings for crop breeding for salinity tolerance are discussed.  相似文献   

6.
Abscisic acid (ABA) is a key plant hormone involved in diverse physiological and developmental processes, including abiotic stress responses and the regulation of stomatal aperture and seed germination. Abscisic acid glucosyl ester (ABA-GE) is a hydrolyzable ABA conjugate that accumulates in the vacuole and presumably also in the endoplasmic reticulum. Deconjugation of ABA-GE by the endoplasmic reticulum and vacuolar β-glucosidases allows the rapid formation of free ABA in response to abiotic stress conditions such as dehydration and salt stress. ABA-GE further contributes to the maintenance of ABA homeostasis, as it is the major ABA catabolite exported from the cytosol. In this work, we identified that the import of ABA-GE into vacuoles isolated from Arabidopsis (Arabidopsis thaliana) mesophyll cells is mediated by two distinct membrane transport mechanisms: proton gradient-driven and ATP-binding cassette (ABC) transporters. Both systems have similar Km values of approximately 1 mm. According to our estimations, this low affinity appears nevertheless to be sufficient for the continuous vacuolar sequestration of ABA-GE produced in the cytosol. We further demonstrate that two tested multispecific vacuolar ABCC-type ABC transporters from Arabidopsis exhibit ABA-GE transport activity when expressed in yeast (Saccharomyces cerevisiae), which also supports the involvement of ABC transporters in ABA-GE uptake. Our findings suggest that the vacuolar ABA-GE uptake is not mediated by specific, but rather by several, possibly multispecific, transporters that are involved in the general vacuolar sequestration of conjugated metabolites.Abscisic acid (ABA) is a major plant hormone involved in various physiological and developmental processes. ABA signaling is fundamental in plant responses to abiotic stresses, including drought, cold, osmotic, and salt stress (Cutler et al., 2010). The best-characterized function of ABA is the regulation of stomatal aperture in response to environmental signals, such as soil and air humidity, temperature, and CO2 concentration (Nilson and Assmann, 2007; Kim et al., 2010). However, ABA also has important functions in seed development, dormancy, and germination (Holdsworth et al., 2008), lateral root formation (Galvan-Ampudia and Testerink, 2011), and leaf senescence (Lim et al., 2007). Besides, ABA is not restricted only to plants; it was also identified to have functions in species from all kingdoms, including humans, and may even have universal functions (e.g. in UV-B stress response; Tossi et al., 2012).ABA is synthesized de novo from the carotenoid zeaxanthin, whereby the first ABA-specific biosynthetic step occurs in the plastid and the final two steps take place in the cytosol (Nambara and Marion-Poll, 2005). The catabolism of ABA is mediated via oxidative and Glc conjugation pathways (Nambara and Marion-Poll, 2005). The ABA 8′-hydroxylation catalyzed by P450 cytochromes of the CYP707A subfamily represents the predominant catabolic pathway of ABA and has been demonstrated to be a key regulatory step in ABA action (Kushiro et al., 2004). The major oxidative ABA catabolites, phaseic acid (PA) and dihydroxyphaseic acid (DPA), exhibit lower and no biological activity, respectively (Sharkey and Raschke, 1980; Kepka et al., 2011). The conjugation of ABA and its oxidative catabolites PA and DPA with Glc catalyzed by UDP-glucosyltransferases represents the other mechanism of ABA inactivation. Abscisic acid glucosyl ester (ABA-GE) appears to be the major conjugate, which was found in various organs of different plant species (Piotrowska and Bajguz, 2011). In contrast to the oxidative pathway, the inactivation of ABA by Glc conjugation is reversible, and hydrolysis of ABA-GE catalyzed by β-glucosidases results in free ABA (Dietz et al., 2000; Lee et al., 2006; Xu et al., 2012). ABA-GE levels were shown to substantially increase during dehydration and specific seed developmental and germination stages (Boyer and Zeevaart, 1982; Hocher et al., 1991; Chiwocha et al., 2003). Furthermore, ABA-GE is present in the xylem sap, where it was shown to increase under drought, salt, and osmotic stress (Sauter et al., 2002). Apoplastic ABA β-glucosidases in leaves have been suggested to mediate the release of free ABA from xylem-borne ABA-GE (Dietz et al., 2000). Therefore, ABA-GE was proposed to be a root-to-shoot signaling molecule. However, under drought stress, ABA-mediated stomatal closure occurs independently of root ABA biosynthesis (Christmann et al., 2007). Thus, the involvement of ABA-GE in root-to-shoot signaling of water stress conditions remains to be revealed (Goodger and Schachtman, 2010).The intracellular compartmentalization of ABA and its catabolites is important for ABA homeostasis (Xu et al., 2013). Free ABA, PA, and DPA mainly occur in the extravacuolar compartments. In contrast to these oxidative ABA catabolites, ABA-GE has been reported to accumulate in vacuoles (Bray and Zeevaart, 1985; Lehmann and Glund, 1986). Since the sequestered ABA-GE can instantaneously provide ABA via a one-step hydrolysis, this conjugate and its compartmentalization may be of importance in the maintenance of ABA homeostasis. The identification of the endoplasmic reticulum (ER)-localized β-glucosidase AtBG1 that specifically hydrolyzes ABA-GE suggests that ABA-GE is also present in the ER (Lee et al., 2006). Plants lacking functional AtBG1 exhibit pronounced ABA-deficiency phenotypes, including sensitivity to dehydration, impaired stomatal closure, earlier germination, and lower ABA levels. Hydrolysis of ER-localized ABA-GE, therefore, represents an alternative pathway for the generation of free cytosolic ABA (Lee et al., 2006; Bauer et al., 2013). This finding raised the question of whether vacuolar ABA-GE also has an important function as an ABA reservoir. This hypothesis was supported by recent identifications of two vacuolar β-glucosidases that hydrolyze vacuolar ABA-GE (Wang et al., 2011; Xu et al., 2013). The vacuolar AtBG1 homolog AtBG2 forms high molecular weight complexes, which are present at low levels under normal conditions but significantly accumulate under dehydration stress. AtBG2 knockout plants displayed a similar, although less pronounced, phenotype to AtBG1 mutants: elevated sensitivity to drought and salt stress, while overexpression of AtBG2 resulted in exactly the opposite effect (i.e. increased drought tolerance). The other identified vacuolar ABA-GE glucosidase, BGLU10, exhibits comparable mutant phenotypes to AtBG2 (Wang et al., 2011). This redundancy may explain the less pronounced mutant phenotypes of vacuolar ABA-GE glucosidases compared with the ER-localized AtBG1. Moreover, the fact that overexpression of the vacuolar AtBG2 is able to phenotypically complement AtBG1 deletion mutants indicates an important role of vacuolar ABA-GE as a pool for free ABA during the abiotic stress response (Xu et al., 2012).The described accumulation and functions of vacuolar ABA-GE raise the question of by which mechanisms ABA-GE is sequestered into the vacuoles. To answer this question, we synthesized radiolabeled ABA-GE and characterized the ABA-GE transport into isolated mesophyll vacuoles. We showed that the vacuole comprises two distinct transport systems involved in the accumulation of ABA-GE: proton gradient-dependent and directly energized ATP-binding cassette (ABC)-type transport. In a targeted approach, we furthermore show that the Arabidopsis (Arabidopsis thaliana) ABC transporters AtABCC1 and AtABCC2 exhibit ABA-GE transport activity in vitro.  相似文献   

7.
Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an EPSIN N-TERMINAL HOMOLOGY protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein NEVERSHED/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.  相似文献   

8.
9.
10.
11.
Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H+-pyrophosphatase and the vacuolar H+-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)–Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.  相似文献   

12.
13.
14.
15.
16.
The orange carotenoid protein (OCP) serves as a sensor of light intensity and an effector of phycobilisome (PB)–associated photoprotection in cyanobacteria. Structurally, the OCP is composed of two distinct domains spanned by a single carotenoid chromophore. Functionally, in response to high light, the OCP converts from a dark-stable orange form, OCPO, to an active red form, OCPR. The C-terminal domain of the OCP has been implicated in the dynamic response to light intensity and plays a role in switching off the OCP’s photoprotective response through its interaction with the fluorescence recovery protein. The function of the N-terminal domain, which is uniquely found in cyanobacteria, is unclear. To investigate its function, we isolated the N-terminal domain in vitro using limited proteolysis of native OCP. The N-terminal domain retains the carotenoid chromophore; this red carotenoid protein (RCP) has constitutive PB fluorescence quenching activity comparable in magnitude to that of active, full-length OCPR. A comparison of the spectroscopic properties of the RCP with OCPR indicates that critical protein–chromophore interactions within the C-terminal domain are weakened in the OCPR form. These results suggest that the C-terminal domain dynamically regulates the photoprotective activity of an otherwise constitutively active carotenoid binding N-terminal domain.  相似文献   

17.
Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.Plant vacuoles are vital organelles for maintaining cell volume and cell turgor, regulating ion homeostasis and pH, disposing toxic materials, and storing and degrading unwanted proteins (Marty, 1999). To perform these diverse functions, vacuoles require an array of different and complex proteins. These proteins are synthesized at the endoplasmic reticulum (ER) and are transported to the vacuole through the vacuolar trafficking pathway. Perturbation of the vacuolar trafficking machinery affects many cellular processes, including tropisms, responses to pathogens, cytokinesis, hormone transport, and signal transduction (Surpin and Raikhel, 2004). The vacuolar trafficking system is comprised of several compartments: the ER, the Golgi apparatus, the trans-Golgi network (TGN), the prevacuolar compartment (PVC), and the vacuole. Vacuolar proteins synthesized at the ER are transported to the cis-Golgi via coat protein complex II (COPII) vesicles and are then transported to the TGN through the Golgi apparatus. In the TGN, proteins are sorted for delivery to their respective locations according to their targeting signal. Vacuolar proteins carrying a vacuolar sorting signal are thought to be recognized by vacuolar sorting receptors (VSRs), which are mainly located in the PVC, although sorting of vacuolar proteins may also occur at the ER and VSRs can be recycled from the TGN to the ER (Castelli and Vitale, 2005; Niemes et al., 2010). Multiple studies suggest that plant VSRs serve as sorting receptors both for lytic vacuole proteins (daSilva et al., 2005; Foresti et al., 2006; Kim et al., 2010) and for storage vacuole proteins (Shimada et al., 2003; Fuji et al., 2007; Zouhar et al., 2010).Osmotic stress is commonly associated with many environmental stresses, including drought, cold, and high soil salinity, that have a severe impact on the productivity of agricultural plants worldwide. Therefore, understanding how plants perceive and respond to osmotic stress is critical for improving plant resistance to abiotic stresses (Zhu, 2002; Fujita et al., 2013). It has long been recognized that osmotic stress can activate several signaling pathways that lead to changes in gene expression and metabolism. One important regulator of these signaling pathways is the phytohormone abscisic acid (ABA), which accumulates in response to osmotic stress. ABA regulates many critical processes, such as seed dormancy, stomatal movement, and adaptation to environmental stress (Finkelstein and Gibson, 2002; Xiong and Zhu, 2003; Cutler et al., 2010). De novo synthesis of ABA is of primary importance for increasing ABA levels in response to abiotic stress. ABA is synthesized through the cleavage of a C40 carotenoid originating from the 2-C-methyl-d-erythritol-4-phosphate pathway, followed by a conversion from zeaxanthin to violaxanthin catalyzed by the zeaxanthin epoxidase ABA1 and then to neoxanthin catalyzed by the neoxanthin synthase ABA4. Subsequently, a 9-cis-epoxycarotenoid dioxygenase (NCED) cleaves the violaxanthin and neoxanthin to xanthoxin. Xanthoxin, in turn, is oxidized by a short-chain alcohol dehydrogenase (ABA2) to abscisic aldehyde, which is converted to ABA by abscisic acid aldehyde oxidase3 (AAO3) using a molybdenum cofactor activated by the molybdenum cofactor sulfurase (ABA3; Nambara and Marion-Poll, 2005). In this pathway, it is generally thought that the cleavage step catalyzed by NCED is the rate-limiting step (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). In Arabidopsis (Arabidopsis thaliana), five members of the NCED family (NCED2, NCED3, NCED5, NCED6, and NCED9) have been characterized (Tan et al., 2003). Of those, NCED3 has been suggested to play a crucial role in ABA biosynthesis, and its expression is induced by dehydration and osmotic stress (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). Thus, understanding how the NCED3 gene is activated in response to osmotic stress is important for the elucidation of the mechanisms that govern plant acclimation to abiotic stress.We have used the firefly luciferase reporter gene driven by the stress-responsive NCED3 promoter to enable the genetic dissection of plant responses to osmotic stress (Wang et al., 2011). Here, we report the characterization of a unique regulator of ABA biosynthesis, 9-cis Epoxycarotenoid Dioxygenase Defective2 (CED2). The ced2 mutants are impaired in osmotic stress tolerance and are defective in the expression of genes required for ABA synthesis and consequently osmotic stress-induced ABA accumulation. The CED2 gene encodes VSR1, previously known to be involved in vacuolar trafficking but not known to be critical for osmotic stress induction of ABA biosynthesis and osmotic stress tolerance. Our study further suggests that intracellular pH changes might act as an early stress response signal triggering osmotic stress-activated ABA biosynthesis.  相似文献   

18.
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV.  相似文献   

19.
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.Endomembrane trafficking in plant cells is complicated such that secretory, endocytic, and recycling pathways are usually integrated with each other at the post-Golgi compartments, among which, the trans-Golgi network (TGN) and prevacuolar compartment (PVC)/multivesicular body (MVB) are best studied (Tse et al., 2004; Lam et al., 2007a, 2007b; Müller et al., 2007; Foresti and Denecke, 2008; Hwang, 2008; Otegui and Spitzer, 2008; Robinson et al., 2008; Richter et al., 2009; Ding et al., 2012; Gao et al., 2014). Following the endocytic trafficking of a lipophilic dye, FM4-64, the TGN and PVC/MVB are sequentially labeled and thus are defined as the early and late endosome, respectively, in plant cells (Lam et al., 2007a; Chow et al., 2008). While the TGN is a tubular vesicular-like structure that may include several different microdomains and fit its biological function as a sorting station (Chow et al., 2008; Kang et al., 2011), the PVC/MVB is 200 to 500 nm in size with multiple luminal vesicles of approximately 40 nm (Tse et al., 2004). Membrane cargoes destined for degradation are sequestered into these tiny luminal vesicles and delivered to the lumen of the lytic vacuole (LV) via direct fusion between the PVC/MVB and the LV (Spitzer et al., 2009; Viotti et al., 2010; Cai et al., 2012). Therefore, the PVC/MVB functions between the TGN and LV as an intermediate organelle and decides the fate of membrane cargoes in the LV.In yeast (Saccharomyces cerevisiae), carboxypeptidase S (CPS) is synthesized as a type II integral membrane protein and sorted from the Golgi to the lumen of the vacuole (Spormann et al., 1992). Genetic analyses on the trafficking of CPS have led to the identification of approximately 17 class E genes (Piper et al., 1995; Babst et al., 1997, 2002a, 2002b; Odorizzi et al., 1998; Katzmann et al., 2001) that constitute the core endosomal sorting complex required for transport (ESCRT) machinery. The evolutionarily conserved ESCRT complex consists of several functionally different subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III and the ESCRT-III-associated/Vacuolar Protein Sorting4 (VPS4) complex. Together, they form a complex protein-protein interaction network that coordinates sorting of cargoes and inward budding of the membrane on the MVB (Hurley and Hanson, 2010; Henne et al., 2011). Cargo proteins carrying ubiquitin signals are thought to be passed from one ESCRT subcomplex to the next, starting with their recognition by ESCRT-0 (Bilodeau et al., 2002, 2003; Hislop and von Zastrow, 2011; Le Bras et al., 2011; Shields and Piper, 2011; Urbé, 2011). ESCRT-0 recruits the ESCRT-I complex, a heterotetramer of VPS23, VPS28, VPS37, and MVB12, from the cytosol to the endosomal membrane (Katzmann et al., 2001, 2003). The C terminus of VPS28 interacts with the N terminus of VPS36, a member of the ESCRT-II complex (Kostelansky et al., 2006; Teo et al., 2006). Then, cargoes passed from ESCRT-I and ESCRT-II are concentrated in certain membrane domains of the endosome by ESCRT-III, which includes four coiled-coil proteins and is sufficient to induce the membrane invagination (Babst et al., 2002b; Saksena et al., 2009; Wollert et al., 2009). Finally, the ESCRT components are disassociated from the membrane by the adenosine triphosphatase (ATPase) associated with diverse cellular activities (AAA) VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1 (SKD1) before releasing the internal vesicles (Babst et al., 1997, 1998).Putative homologs of ESCRT-I–ESCRT-III and ESCRT-III-associated components have been identified in plants, except for ESCRT-0, which is only present in Opisthokonta (Winter and Hauser, 2006; Leung et al., 2008; Schellmann and Pimpl, 2009). To date, only a few plant ESCRT components have been studied in detail. The Arabidopsis (Arabidopsis thaliana) AAA ATPase SKD1 localized to the PVC/MVB and showed ATPase activity that was regulated by Lysosomal Trafficking Regulator-Interacting Protein5, a plant homolog of Vps Twenty Associated1 Protein (Haas et al., 2007). Expression of the dominant negative form of SKD1 caused an increase in the size of the MVB and a reduction in the number of internal vesicles (Haas et al., 2007). This protein also contributes to the maintenance of the central vacuole and might be associated with cell cycle regulation, as leaf trichomes expressing its dominant negative mutant form lost the central vacuole and frequently contained multiple nuclei (Shahriari et al., 2010). Double null mutants of CHARGED MULTIVESICULAR BODY PROTEIN, chmp1achmp1b, displayed severe growth defects and were seedling lethal. This may be due to the mislocalization of plasma membrane (PM) proteins, including those involved in auxin transport such as PINFORMED1, PINFORMED2, and AUXIN-RESISTANT1, from the vacuolar degradation pathway to the tonoplast of the LV (Spitzer et al., 2009).Plant ESCRT components usually contain several homologs, with the possibility of functional redundancy. Single mutants of individual ESCRT components may not result in an obvious phenotype, whereas knockout of all homologs of an ESCRT component by generating double or triple mutants may be lethal to the plant. As a first step to carry out systematic analysis on each ESCRT complex in plant cells, here, we established an efficient analysis system to monitor the localization changes of four vacuolar reporters that accumulate either in the lumen (LRR84A-GFP, EMP12-GFP, and aleurain-GFP) or on the tonoplast (GFP-VIT1) of the LV and identified several ESCRT-III dominant negative mutants. We reported that ESCRT-III subunits were involved in the release of PVC/MVB’s internal vesicles from the limiting membrane and were required for membrane protein degradation from secretory and endocytic pathways. In addition, transgenic Arabidopsis plants with induced expression of ESCRT-III dominant negative mutants showed severe cotyledon developmental defects. We also showed that membrane dissociation of ESCRT-III subunits was regulated by direct interaction with SKD1.  相似文献   

20.
CATION EXCHANGERs CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3 in regulating apoplastic pH and describe how they contribute to auxin transport using the guard cell’s response as readout of hormone signaling and cross talk. We show that indole-3-acetic acid (IAA) inhibition of abscisic acid (ABA)-induced stomatal closure is impaired in cax1, cax3, and cax1/cax3. These mutants exhibited constitutive hypopolarization of the plasma membrane, and time-course analyses of membrane potential revealed that IAA-induced hyperpolarization of the plasma membrane is also altered in these mutants. Both ethylene and 1-naphthalene acetic acid inhibited ABA-triggered stomatal closure in cax1, cax3, and cax1/cax3, suggesting that auxin signaling cascades were functional and that a defect in IAA transport caused the phenotype of the cax mutants. Consistent with this finding, chemical inhibition of AUX1 in wild-type plants phenocopied the cax mutants. We also found that cax1/cax3 mutants have a higher apoplastic pH than the wild type, further supporting the hypothesis that there is a defect in IAA import in the cax mutants. Accordingly, we were able to fully restore IAA inhibition of ABA-induced stomatal closure in cax1, cax3, and cax1/cax3 when stomatal movement assays were carried out at a lower extracellular pH. Our results suggest a network linking the vacuolar cation exchangers to apoplastic pH maintenance that plays a crucial role in cellular processes.Stomata are pores at the surface of the leaves, gating water loss and gas exchange between plants and the atmosphere. One stoma is formed by two specialized guard cells that are able to modulate their size and shape to control stomatal aperture in response to various signals, including water status, hormonal stimuli, CO2 levels, light, or temperature (Kwak et al., 2008). These stomatal movements are regulated by ion fluxes in guard cells, the changes in the osmoticum status being compensated by water movement, which modifies the cell’s volume. Ion transport between the cell and ion stores (vacuole, apoplastic space) must be therefore tightly controlled, and any change in the guard cell’s ability to regulate this can compromise its faculty to trigger stomatal movement.Calcium ion (Ca2+) is one ion that regulates stomatal movements, and its cytosolic concentration is controlled by both influx, via plasma membrane channels, and release from internal stores such as vacuoles and the endoplasmic reticulum. Calcium transport from the vacuole is ensured, at least in part, by members of the Cation Exchanger (CAX) family (Punshon et al., 2012). Six members of this family are found in Arabidopsis (Arabidopsis thaliana); all use a proton gradient generated by the vacuolar H+-ATPase (VHA) or the vacuolar pyrophosphatase (AVP1) to energize their activity. CAX1 and CAX3 are the closest homologs within the family and have been proposed to play similar roles in Ca2+ homeostasis (Zhao et al., 2008). However, biochemical characterization highlighted differences in their respective rates of Ca2+ transport, and they have been proposed to function as heterodimers, with unique properties associated with this structure (Cheng et al., 2005).Among common phenotypes of cax1 and cax3, an increased sensitivity to abscisic acid (ABA; Zhao et al., 2008) suggests a function for these transporters in modulating hormone signaling. ABA is well known for its role in triggering stomatal closure, whereas auxin, ethylene, or cytokinins can counteract its effect. Auxin in particular is also essential in governing plant development, including root architecture, tropisms and polarity, apical dominance, tissue differentiation, and plant development. Tight control of its distribution throughout the plant is achieved via ubiquitous and specific expression of members of three transporter families, acting together in mediating indole-3-acetic acid (IAA) fluxes (Krecek et al., 2009).The unique pattern of auxin distribution is predominately due to the asymmetrical localization of members of the PIN-FORMED (PIN) family of auxin exporters (Zazímalová et al., 2010). In Arabidopsis, this family comprises eight members, whose spatiotemporal expression is responsible for the auxin gradient observed in many plant tissues (Paponov et al., 2005). In addition, most members of the ATP-binding cassette (ABC)-type family of exporter ABCB (ABCB/multidrug resistance/phosphoglycoprotein) have been shown to mediate auxin export from the cell (Geisler and Murphy, 2006). Auxin import is mainly ensured by (1) active transport of IAA by members of the AUX1/LAX family proteins (Geisler and Murphy, 2006), and (2) passive diffusion across the plasma membrane. AUX1 activity was demonstrated to be pH-dependent (Yang et al., 2006), IAA transport being optimal at acidic pH (5.5–6), and dramatically reduced at higher values. It is interesting that passive, pH-dependent IAA diffusion across the plasma membrane also accounts for an important part of IAA transport and signaling. At apoplastic pH (5.5), between 10% and 25% of IAA is protonated (Yang et al., 2006), which allows for free diffusion of IAA through the membrane. In contrast, the ratio between protonated and deprotonated IAA (IAAH/IAA) falls to 1% to 5% when pH exceeds 6.5, preventing it from being passively transported into the cytoplasm (Yang et al., 2006). These two aspects make control of the apoplastic pH crucial in the regulation of auxin signaling, as it modulates all the known routes of IAA import. Such a tight pH constraint is ensured by plasma membrane-localized Arabidopsis H+-ATPases (AHA; Haruta et al., 2010) that transport protons from the cytosol to the extracellular space.Our work presents the characterization of two vacuolar transporters’ abilities to modulate the apoplastic pH, and therefore contribute to proper auxin transport and signaling. Our results highlight the effects of mutations in CAX1 and CAX3 in plant development and in stomatal functioning, providing new insights for understanding hormone signaling in plants as well as plant adaptation to stress conditions via hormone cross talk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号