首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
By using poly(Glu: Tyr, 4:1) as an exogenous substrate, the characteristics of insulin receptor associated protein tyrosine kinase (PTK) from rabbit skeletal muscle has been compared with a growth factor-independent non-receptor PTK partially purified from rat lung particulate fraction. The two PTKs phosphorylated poly(Glu: Tyr; 4:1) very effectively with apparent Km values of 0.3 mg/ml for insulin receptor PTK and 0.8 mg/ml for lung PTK. ATP was the preferred phosphoryl donor for both PTKs (Km = 150 microM); however, in the case of lung PTK, GTP was able to partially replace ATP. ATP analogues, AMP-PNP and ATP-gamma-S inhibited the activities of both enzymes. Receptor PTK was more active in the presence of Mn2+ whereas the lung PTK did not discriminate between Mg2+ or Mn2+ for enzyme activity. Para-hydroxymercurobenzoate (pHMB), a SH-group blocking agent, inhibited the activities of both PTKs, suggesting the requirement of SH-groups for enzymatic activities. Both enzymes were inhibited by fluorosulfonylbenzoyl 5'-adenosine (FSBA). NaCl also inhibited both kinases, however, lung PTK was more sensitive to inhibition. In addition, the lung PTK was not retained on a wheat germ agglutinin (WGA)-agarose column, suggesting that the lung enzyme is either not a glycoprotein or that the carbohydrate moieties present, if any, have no affinity for WGA. Furthermore, the lung PTK appears to be immunologically distinct from both insulin receptor and pp60Src, since it was not immunoprecipitated by antibodies to either pp60Src or insulin receptor. These data indicate that only a few but significant differences exist in the characteristics of receptor and non-receptor associated PTKs.  相似文献   

2.
In rat 1 fibroblasts, insulin has little or no stimulatory effect on the activities of either MAP2 protein kinase or ribosomal protein S6 kinase. In contrast, in rat 1 cells that overexpress the normal human insulin receptor (rat 1 HIRc B; McClain et al. (1987) J. Biol. Chem. 262, 14663-14671), insulin activates both MAP2 and S6 kinase activities close to 5-fold. A MAP2 kinase has been purified from insulin-treated rat 1 HIRc B cells over 6300-fold by chromatography on Q-Sepharose, phenyl-Sepharose, S-Sepharose, phosphocellulose, QAE-Sepharose, UltrogelAcA54, DEAE-cellulose, and a second Q-Sepharose. Its specific activity is approximately 0.8-1 mumol.min-1.mg-1 with MAP2 and 3 mumol.min-1.mg-1 with myelin basic protein. The enzyme preparation contains one major band of Mr = 43,000 upon SDS-polyacrylamide gel electrophoresis, which is immunoblotted by antibodies to phosphotyrosine. A sequence from the 43-kDa band led to the isolation of a cDNA encoding the enzyme, which we have named ERK1 for extracellular signal-regulated kinase (Boulton et al. (1990) Science 249, 64-67).  相似文献   

3.
A complementary DNA that encodes a bovine brain, calmodulin-sensitive (type I) adenylylcyclase has been inserted into the baculovirus genome under the control of the strong polyhedron promoter. Expression of the recombinant adenylylcyclase in Sf9 cells using recombinant baculovirus increases adenylylcyclase activity in cell membranes to 10-20 nmol.min-1.mg-1 (approximately 0.1% of membrane protein). The catalytic activity of the recombinant adenylylcyclase can be stimulated by Gs alpha, calmodulin, or forskolin, and it can be inhibited by adenosine analogs and by G protein beta gamma subunit. The specific activity of the purified recombinant protein approximates 5 mumol.min-1.mg-1. This is similar to that of the enzyme purified from bovine brain. Type I adenylylcyclase has a quasiduplicated structure. There are two membrane-spanning domains, each with six putative transmembrane helices, and there are two presumed nucleotide-binding domains that are about 55% similar to each other. No catalytic activity is detectable when each half of the adenylylcyclase molecule is expressed by itself. However, coexpression of the two halves results in considerable enzymatic activity. Interaction between the two halves of adenylylcyclase may be necessary for catalysis.  相似文献   

4.
Ornithine transcarbamylase (OTCase) was purified from the small intestine of rat and the properties of the gut enzyme were compared with those of the enzyme from liver. The enzymes from both sources bound to the transition-state analog inhibitor, delta-N-(phosphonoacetyl)-L-ornithine, immobilized on Sepharose and eluted with carbamyl phosphate as a homogeneous preparation. The specific activities of the pure enzymes were 966 mumol min-1 mg-1 and 928 mumol min-1 mg-1 from liver and gut respectively, and the molecular mass, based on electrophoretic mobility, was 38 000 Da. The isoelectric point of the enzymes from both sources was 7.3. The enzymes from both sources cross-react to the same extent with antibodies against the liver enzyme on Western transfers and the size of the mRNA was identical on Northern transfers probed with a cDNA for the liver enzyme. Although OTCase is apparently the same gene product in both liver and gut, the enzyme levels respond differently to alterations in the protein content of the diet. OTCase in liver increased from 0.76 mumol min-1 microgram-1 DNA on 15% casein to 1.3 mumol min-1 microgram-1 DNA on 60% casein (P less than 0.01) whereas in small intestine the level decreased from 8.8 nmol min-1 microgram DNA on 15% casein to 5.7 nmol min-1 microgram-1 DNA on 60% casein (P less than 0.05). When expressed on a fresh-weight basis, the enzyme activity in liver shows the characteristic increase with increasing protein, whereas the activity in gut does not. The connection between these differences in gene expression and the different physiological roles of OTCase in liver and gut is discussed.  相似文献   

5.
The reduction of the heterodisulfide of coenzyme M (H-S-CoM) and 7-mercaptoheptanoyl-L-threonine phosphate (H-S-HTP) is a key reaction in the metabolism of methanogenic bacteria. The heterodisulfide reductase catalyzing this step was purified 80-fold to apparent homogeneity from Methanobacterium thermoautotrophicum. The native enzyme showed an apparent molecular mass of 550 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of three different subunits of apparent molecular masses 80 kDa, 36 kDa, and 21 kDa. The enzyme, which was brownish yellow, contained per mg protein 7 +/- 1 nmol FAD, 130 +/- 10 nmol non-heme iron and 130 +/- 10 nmol acid-labile sulfur, corresponding to 4 mol FAD and 72 mol FeS/mol native enzyme. The purified heterodisulfide reductase catalyzed the reduction of CoM-S-S-HTP (app. Km = 0.1 mM) with reduced benzylviologen at a specific rate of 30 mumol.min-1.mg protein-1 (kcat = 68 s-1) and the reduction of methylene blue with H-S-CoM (app. Km = 0.2 mM) plus H-S-HTP (app. Km less than 0.05 mM) at a specific rate of 15 mumol.min-1.mg-1. The enzyme was highly specific for CoM-S-S-HTP and H-S-CoM plus H-S-HTP. The physiological electron donor/acceptor remains to be identified.  相似文献   

6.
Dimethylallyl tryptophan synthase (DMAT synthase) catalyzes the alkylation of L-tryptophan by dimethylallyl diphosphate to form 4-(gamma,gamma-dimethylallyl)-L-tryptophan. The enzyme from mycelia of Claviceps purpurea was purified approximately 125-fold to apparent homogeneity by chromatography on n-butyl Sepharose, Q Sepharose, phenyl Sepharose, and Protein Pak as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Analysis by gel filtration chromatography and SDS-PAGE indicated that DMAT synthase is an alpha 2 dimer with a molecular mass of 105 kDa. The purified enzyme was active in metal-free buffer containing EDTA. However, activity was enhanced upon addition of divalent calcium or magnesium ions to the buffer. Values for KM and Vmax were determined in the metal-free EDTA buffer (KMDMAPP, 14 microM; KML-tryptophan, 40 microM; Vmax, 215 nmol min-1 mg-1), 4 mM CaCl2 (KMDMAPP, 8.0 microM; KML-tryptophan, 17 microM; Vmax, 504 nmol min-1 mg-1), and 4 mM MgCl2 (KMDMAPP, 8.0 microM; KML-tryptophan, 12 microM; Vmax, 455 nmol min-1 mg-1). The product was isolated and characterized by 1H NMR, uv, and FAB mass spectrometry.  相似文献   

7.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

8.
The human epidermal-growth-factor receptor (EGF-R) is a 170-kDa transmembrane glycoprotein that mediates the mitogenic response of cells to EGF and transforming growth factor alpha. Culture conditions have been developed for the large-scale expression of the cytoplasmic domain of the EGF-R in insect cells using a recombinant baculovirus. From 61 Sf9 cells, grown to high density using a bioreactor, 20 mg of the EGF-R kinase was purified to greater than 95% purity. Purification, which was carried out in the absence of detergents using classical purification methods, yielded an EGF-R protein that was not phosphorylated on tyrosine. This procedure has enabled us to produce high quality enzyme for both structural and biochemical studies on the EGF-R kinase. The in vitro activity of the cytoplasmic domain of the EGF-R kinase was modulated by multiple assay factors which include substrates, divalent cations and conformational modulators. Kinetic analysis in the presence of Mn2+ gave an apparent Vmax value of 20 nmol min-1 mg-1 and Km values of 4.5 microM for ATP and 1.43 mM for angiotensin II. This corresponds to a turnover number of 1.4 mol min-1 mol-1. Ammonium sulfate (1 M) resulted in an eightfold stimulation of kinase activity when assayed using angiotensin II as substrate. The specific activity of the intracellular domain of the EGF-R, when assayed at 20 degrees C in the presence of 1M ammonium sulfate, was 160 nmol min-1 mg-1. Activation of the EGF-R kinase by ammonium sulfate was found to be substrate-specific. No activation was found when assayed using polymeric substrates. Addition of Me(2+)-ATP to the purified enzyme resulted in autophosphorylation and was accompanied by retardation of SDS/PAGE migration. Kinetic constants and metal ion preferences of a number of co-polymers and peptide substrates have been compared. Dramatic differences in kinetic constants were found which were dependent on both the substrate and metal ion used. Activation of EGF-R autophosphorylation was found to be influenced by the use of charged polymers. The random polymer of Glu, Lys, Ala, Tyr (2:5:6:1), which was not phosphorylated by the EGF-R kinase, dramatically activates autophosphorylation of the EGF-R. Thus the intracellular domain of the EGF-R appears to be in a low-activity conformation which, under appropriate assay conditions, can be activated to a similar specific activity to that reported for the purified EGF-R holoenzyme.  相似文献   

9.
A novel enzyme, arylalkyl acylamidase, which shows a strict specificity for N-acetyl arylalkylamines, but not acetanilide derivatives, was purified from the culture broth of Pseudomonas putida Sc2. The purified enzyme appeared to be homogeneous, as judged by native and SDS/PAGE. The enzyme has a molecular mass of approximately 150 kDa and consists of four identical subunits. The purified enzyme catalyzed the hydrolysis of N-acetyl-2-phenylethylamine to 2-phenylethylamine and acetic acid at the rate of 6.25 mumol.min-1.mg-1 at 30 degrees C. It also catalyzed the hydrolysis of various N-acetyl arylalkylamines containing a benzene or indole ring, and acetic acid arylalkyl esters. The enzyme did not hydrolyze acetanilide, N-acetyl aliphatic amines, N-acetyl amino acids, N-acetyl amino sugars or acylthiocholine. The apparent Km for N-acetylbenzylamine, N-acetyl-2-phenylethylamine and N-acetyl-3-phenylpropylamine are 41 mM, 0.31 mM and 1.6 mM, respectively. The purified enzyme was sensitive to thiol reagents such as Ag2SO4, HgCl2 and p-chloromercuribenzoic acid, and its activity was enhanced by divalent metal ions such as Zn2+, Mg2+ and Mn2+.  相似文献   

10.
Soluble guanylyl cyclase was purified from bovine lung by an immunoaffinity chromatographic method using IgG fractions of antisera against a synthetic peptide of the C-terminus of the 70-kDa subunit of the enzyme. After anion-exchange chromatography, the enzyme was bound to an immunoaffinity column and was eluted with the synthetic peptide. This method allowed the convenient isolation of 2 mg of apparently homogeneous enzyme from 40 g cytosolic proteins. The enzyme had an apparent molecular mass of about 150 kDa and consisted of two subunits (70 kDa and 73 kDa) as determined by gel permeation fast protein liquid chromatography and SDS/PAGE. The basal activities determined in the presence of Mg2+ and Mn2+ were 10-20 nmol.min-1.mg-1 and 80-100 nmol.min-1.mg-1, respectively. The enzyme exhibited an ultraviolet-visible absorption spectrum typical for hemoproteins, with a Soret band at 430 nm. The purified enzyme was stimulated by NO-containing compounds. Maximal enzyme activities measured in the presence of sodium nitroprusside were 1.2-2.4 mumol.min-1.mg-1 (half-maximal effect of sodium nitroprusside at 1.3-1.9 microM) and 0.9-1.8 mumol.min-1.mg-1 (half-maximal effect at 0.28-0.41 microM sodium nitroprusside) in the presence of Mg2+ and Mn2+, respectively. The method developed for the large-scale purification of soluble guanylyl cyclase by immunoaffinity chromatography, using synthetic peptides for the elution of the enzyme, appears to be superior to previously described methods. As antibodies against synthetic peptides corresponding to deduced amino acid sequences of the respective protein are easily obtained, the described method may be suitable for a convenient large-scale purification of various proteins.  相似文献   

11.
The cyclic AMP-dependent protein kinase catalyzes the phosphorylation of hydroxyproline present in the heptapeptide, Leu-Arg-Arg-Ala-Hyp-Leu-Gly. The Km value for the reaction with this substrate was high (approximately 18 mM) compared to the Km values reported for the analogous threonine and serine-containing peptides, which were 0.59 mM and 0.016 mM, respectively (Kemp, B.E., Graves, D.J., Benjamini, E., and Krebs, E.G. (1977) J. Biol. Chem. 252, 4888-4894). The Vmax value with the hydroxyproline-containing peptide was 1 mumol . min-1 mg-1 in contrast to Vmax values of 6 mumol . min-1 mg-1 and 20 mumol . min-1 mg-1 for the threonine- and serine-containing peptides, respectively. Phosphate esterified to hydroxyproline present in the peptide was relatively stable in hot alkali, only 10% being released as Pi within 30 min in 0.1 N NaOH at 100 degrees C, whereas all of the phosphate was released from the phosphoserine peptide analogue under these conditions. Phosphohydroxyproline in the peptide was also more stable to acid (5.7 N HCl, 110 degrees C) than phosphoserine, the time for 50% release as Pi being 15 h in contrast to 6 h for the latter.  相似文献   

12.
Cysteine dioxygenase (CDO, EC 1.13.11.20) is a non-heme mononuclear iron enzyme that oxidizes cysteine to cysteinesulfinate. CDO catalyzes the first step in the pathway of taurine synthesis from cysteine as well as the first step in the catabolism of cysteine to pyruvate and sulfate. Previous attempts to purify CDO have been associated with partial or total inactivation of CDO. In an effort to obtain highly purified and active CDO, recombinant rat CDO was heterologously expressed and purified, and its activity profile was characterized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility, and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The approximately 40.3 kDa full-length fusion protein was purified to homogeneity using a three-column scheme, the fusion tag was then removed by digestion with factor Xa, and a final column step was used to purify homogeneous approximately 23 kDa CDO. The purified CDO had high specific activity and kinetic parameters that were similar to those for non-purified rat liver homogenate, including a Vmax of approximately 1880 nmol min-1 mg-1 CDO (kcat=43 min-1) and a Km of 0.45 mM for L-cysteine. The expression and purification of CDO in a stable, highly active form has yielded significant insight into the kinetic properties of this unique thiol dioxygenase.  相似文献   

13.
Crude soluble extracts of Corynebacterium cyclohexanicum, grown on cyclohexanecarboxylic acid, were found to contain 4-hydroxybenzoate 3-hydroxylase which functions with NADH as well as NADPH. The purified enzyme preparation was electrophoretically homogeneous and contained FAD as prosthetic group. The relative molecular mass of the enzyme was estimated to be about 47000 by native and denaturated acrylamide gel electrophoresis, indicating that it is monomeric. The enzyme was stable at 60 degrees C for 10 min. The enzyme was highly specific for p-hydroxybenzoate. The activity was inhibited by several aromatic analogues of p-hydroxybenzoate such as p-aminobenzoate, p-fluorobenzoate, o-hydroxybenzoate, m-hydroxybenzoate, 2,4-dihydroxygenzoate, and 2,5-dihydroxybenzoate. The Km value for NADH was fairly constant, about 45 microM, in the pH range 7.0-8.4, whereas the Km value for NADPH increased from 63 microM to 170 microM as the pH rose from 7.0 to 8.4. V values in the same pH range, however, were approximately constant in both cases; about 30 mumol min-1 mg-1 for NADH, and 26 mumol min-1 mg-1 for NADPH. Mg2+ was required for full activity of the enzyme in low concentrations of phosphate buffer. The enzyme was inhibited by C1- which was non-competitive with respect to NADH, NADPH and p-hydroxybenzoate.  相似文献   

14.
The cellular location of beta-1,4-glucosidase activity from, as well as the transport of glucose and cellobiose into, cells of Clavispora lusitaniae NRRL Y-5394 and Candida wickerhamii NRRL Y-2563 was investigated. The beta-glucosidase from Cl. lusitaniae appeared to be a soluble cytoplasmic enzyme. This yeast transported both glucose and cellobiose when grown in medium containing cellobiose as the sole carbon source. Glucose, but not cellobiose, uptake was observed for cells grown on glucose. The Ks and Vmax values for cellobiose transport were different when Cl. lusitaniae was cultured either aerobically (0.11 mM, 6.28 nmol.min-1.mg-1) or anaerobically (0.25 mM, 3.88 nmol-1.min-1.mg-1). The Ks and Vmax values for glucose transport (0.23-1.10 mM and 17.2-33.9 nmol.min-1.mg-1) also differed with the various growth conditions. The beta-glucosidase from C. wickerhamii was extracytoplasmically located. This yeast transported glucose, but not cellobiose, under all growth conditions tested. The Ks for glucose uptake was 0.13-0.28 mM when C. wickerhamii was cultured on cellobiose and 0.25-0.30 mM when cultured on glucose. The Vmax values for glucose uptake were greater for cells cultured on cellobiose (35.0-37.9 nmol.min-1.mg-1) than for cells cultured on glucose (15.6-21.4 nmol.min-1.mg-1). Cellobiose did not inhibit glucose uptake in either yeast. Glucose partially inhibited cellobiose transport in C. lusitaniae, but only if the yeast was grown aerobically. In both yeasts, sugar transport was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and 1799, but insensitive to valinomycin.  相似文献   

15.
The release of free arachidonic acid from membrane phospholipids is believed to be the rate-controlling step in the production of the prostaglandins, leukotrienes, and related metabolites in inflammatory cells such as the macrophage. We have previously identified several different phospholipases in the macrophage-like cell line P388D1 potentially capable of controlling arachidonic acid release. Among them, a membrane-bound, alkaline pH optimum, Ca2+-dependent phospholipase A2 is of particular interest because of the likelihood that the regulatory enzyme has these properties. This phospholipase A2 has now been solubilized from the membrane fraction with octyl glucoside and partially purified. The first two steps in this purification are butanol extractions that yield a lyophilized, stable preparation of phospholipase A2 lacking other phospholipase activities. This phospholipase A2 shows considerably more activity when assayed in the presence of glycerol, regardless of whether the substrate, dipalmitoylphosphatidylcholine, is in the form of sonicated vesicles or mixed micelles with the nonionic surfactant Triton X-100. Glycerol (70%) increases both the Vmax and the Km with both substrate forms, giving a Vmax of about 15 nmol min-1 mg-1 and an apparent Km of about 60 microM for vesicles and a Vmax of about 100 nmol min-1 mg-1 and an apparent Km of about 1 mM for mixed micelles. Vmax/Km is slightly greater for vesicles than for mixed micelles. The lyophilized preparation of the enzyme is routinely purified about 60-fold and is suitable for evaluating phospholipase A2 inhibitors such as manoalide analogues. Subsequent steps in the purification are acetonitrile extraction followed by high performance liquid chromatography on an Aquapore BU-300 column and a Superose 12 column. This yields a 2500-fold purification of the membrane-bound phospholipase A2 with a 25% recovery and a specific activity of about 800 nmol min-1 mg-1 toward 100 microM dipalmitoylphosphatidylcholine in mixed micelles. When this material was subjected to analysis on a Superose 12 sizing column, the molecular mass of the active fraction was approximately 18,000 daltons.  相似文献   

16.
A soluble, sodium-nitroprusside-stimulated guanylate cyclase as been purified from bovine lung by DEAE-cellulose chromatography, ammonium sulfate precipitation, chromatography on Blue Sepharose CL-6B and preparative gel electrophoresis. Apparent homogeneity was obtained after at least 7000-fold purification with a yield of 3%. A single stained band (Mr 72000) was observed after gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme migrated as one band also under non-denaturing conditions in acrylamide gels (5-12%). The mobility of this band corresponded to an Mr of 145000. The enzyme sedimented on sucrose gradients with an S20, w of 7.0 S. Gel filtration yielded a Stokes' radius of 4.6 nm. These data suggest that the enzyme has an Mr of approximately 150000 and consists of two, presumably identical, subunits of Mr 72000. Sodium nitroprusside stimulated the purified enzyme 15-fold and 140-fold to specific activities of 8.5 and 15.7 mumol of cGMP formed min-1 mg-1 in the presence of Mn2+ and Mg2+, respectively. Formation of cGMP was proportional to the incubation time and to the amount of enzyme added. The stimulatory effect of sodium nitroprusside was half-maximal at about 2 microM, was observed immediately after addition and could be reversed either by dilution or by removal of sodium nitroprusside on a Sephadex G-25 column. The purified enzyme in the absence of catalase was stimulated by sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine and 3-morpholino-sydnonimine and in the presence of catalase by sodium nitrite and sodium azide. In the presence of Mn2+ and sodium nitroprusside, the purified enzyme catalyzed the formation of cAMP from ATP at a rate of 0.6 mumol min-1 mg-1.  相似文献   

17.
Glutamate semialdehyde aminotransferase, a key enzyme in the synthetic pathway leading to chlorophyll was purified from pea (Pisum sativum) leaves. Although the preparation contained a single contaminant the enzyme could be unambiguously identified as a dimer of subunit molar mass 45 kDa having an absorption spectrum consistent with the presence of pyridoxamine phosphate as cofactor. The cofactor was released by treatment with strong phosphate at low pH and was identified and quantified fluorimetrically. The specific activity of the enzyme (1.4 mumol.min-1.mg-1; 23 nkatal.mg-1) is very much higher than previously reported.  相似文献   

18.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

19.
Phloroglucinol reductase was purified 90-fold to homogeneity from the anaerobic rumen organism Eubacterium oxidoreducens strain G-41. The enzyme is stable in the presence of air and is found in the soluble fraction after ultracentrifugation of cell extract. Ion-exchange, hydrophobic interaction, and affinity chromatography were used to purify the enzyme. The native Mr is 78,000, and the subunit Mr is 33,000 indicating an alpha 2 homodimer. The enzyme is specific for phloroglucinol and NADPH. The Km and Vmax are 600 microM and 640 mumol min-1 mg-1 (pH 7.2) for phloroglucinol, and 6.7 microM and 550 mumol min-1 mg-1 (pH 6.8) for NADPH; the Km and Vmax for the reverse direction are 290 microM and 140 mumol min-1 mg-1 (pH 7.2) for dihydrophloroglucinol, and 27 microM and 220 mumol min-1 mg-1 (pH 7.2) for NADP. Temperature and pH optima are 40 degrees C and 7.8 in the forward direction. The pure enzyme is colorless in solution and flavins are absent. Analysis for cobalt, manganese, molybdenum, vanadium, tungsten, selenium, copper, nickel, iron, and zinc indicated that these metals are not components of the phloroglucinol reductase. Cupric chloride, n-ethylmaleimide, and p-chloromercuribenzoate are potent inhibitors of enzyme activity. The properties of phloroglucinol reductase indicate that it functions in the pathway of anaerobic degradation of trihydroxybenzenes by catalyzing reduction of the aromatic nucleus prior to ring fission.  相似文献   

20.
Human, microsomal, and glutathione-dependent prostaglandin (PG) E synthase-1 (mPGES-1) was expressed with a histidine tag in Escherichia coli. mPGES-1 was purified to apparent homogeneity from Triton X-100-solubilized bacterial extracts by a combination of hydroxyapatite and immobilized metal affinity chromatography. The purified enzyme displayed rapid glutathione-dependent conversion of PGH2 to PGE2 (Vmax; 170 micromol min-1 mg-1) and high kcat/Km (310 mm-1 s-1). Purified mPGES-1 also catalyzed glutathione-dependent conversion of PGG2 to 15-hydroperoxy-PGE2 (Vmax; 250 micromol min-1 mg-1). The formation of 15-hydroperoxy-PGE2 represents an alternative pathway for the synthesis of PGE2, which requires further investigation. Purified mPGES-1 also catalyzed glutathione-dependent peroxidase activity toward cumene hydroperoxide (0.17 micromol min-1 mg-1), 5-hydroperoxyeicosatetraenoic acid (0.043 micromol min-1 mg-1), and 15-hydroperoxy-PGE2 (0.04 micromol min-1 mg-1). In addition, purified mPGES-1 catalyzed slow but significant conjugation of 1-chloro-2,4-dinitrobenzene to glutathione (0.8 micromol min-1 mg-1). These activities likely represent the evolutionary relationship to microsomal glutathione transferases. Two-dimensional crystals of purified mPGES-1 were prepared, and the projection map determined by electron crystallography demonstrated that microsomal PGES-1 constitutes a trimer in the crystal, i.e. an organization similar to the microsomal glutathione transferase 1. Hydrodynamic studies of the mPGES-1-Triton X-100 complex demonstrated a sedimentation coefficient of 4.1 S, a partial specific volume of 0.891 cm3/g, and a Stokes radius of 5.09 nm corresponding to a calculated molecular weight of 215,000. This molecular weight, including bound Triton X-100 (2.8 g/g protein), is fully consistent with a trimeric organization of mPGES-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号