首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Grizzly bears (Ursus arctos) cohabit landscapes with a diversity of ungulates, but the degree to which grizzly bears are carnivorous is unclear and likely varies across landscapes. We used stable isotopes of carbon and nitrogen to infer seasonal diets of grizzly bears in northern British Columbia while studying predator–prey dynamics in a largely undisturbed system. We found high seasonal variation in diets among individuals; males consumed more ungulate prey than did females throughout the year. In fall, both sexes increased their consumption of prey; large ungulates constituted 51% and 32% of the fall diets of males and females, respectively. This increase in carnivory appeared to be primarily associated with consumption of elk (Cervus elaphus). Estimates of prey proportions in the diets of grizzly bears were highly sensitive to the range of tissue to diet discrimination values that were incorporated in isotope models. Small changes in discrimination values resulted in estimated prey intakes that varied more than threefold as a percentage of the diet depending on sex and season. We caution against using standard discrimination values, and we recommend that diet reconstructions using stable isotopes be based on tissue-specific values that would be appropriate for the species of interest. © 2012 The Wildlife Society.  相似文献   

2.
Abstract: We used resource selection functions (RSF) to estimate the relative probability of use for grizzly bears (Ursus arctos) adjacent to the Parsnip River, British Columbia, Canada, 1998-2003. We collected data from 30 radiocollared bears on a rolling plateau where a large portion of the landscape had been modified by human activities, primarily forestry. We also monitored 24 radiocollared bears in mountain areas largely inaccessible to humans. Bears that lived on the plateau existed at less than one-quarter the density of bears in the mountains. Plateau bears ate more high-quality food items, such as meat and berries, leading us to conclude that food limitation was not responsible for the differences in densities. We hypothesized that plateau bears were limited by human-caused mortality associated with roads constructed for forestry activities. Independent estimates of bear population size from DNA-based mark-recapture techniques allowed us to link populations to habitats using RSF models to scale habitat use patterns to population density. To evaluate whether differences in land-cover type, roads, or mortality risk could account for the disparity in density we used the mountain RSF model to predict habitat use and number of bears on the plateau and vice versa. We predicted increases ranging from 34 bears to 96 bears on the plateau when switching model coefficients, excluding land-cover types; when exchanging land-cover coefficients, the model predicted that the plateau population would be 9 bears lower than was observed. Large reductions in the numbers of mountain bears were predicted by habitat-selection models of bears using the plateau landscape. Although RSF models estimated in mountain and plateau landscapes could not predict bear use and abundance in the other areas, contrasts in models between areas provided a useful tool for examining the effects of human activities on grizzly bears.  相似文献   

3.
Understanding how animals utilize their habitat provides insights about their ecological needs and is of importance for both theoretical and applied ecology. As changing seasons impact prey habitat selection and vegetation itself, it is important to understand how seasonality impacts microhabitat choice in optimal foragers and their prey. We followed habituated bat‐eared foxes (Otocyon megalotis) in the Kalahari, South Africa, to study their seasonal habitat selection patterns and relate them to the habitat preferences of their main prey, termites (Hodotermes mossambicus). We used Resource Selection Functions (RSFs) to study bat‐eared foxes’ 3rd‐ and 4th‐order habitat selection by comparing used locations to random ones within their home ranges. Third‐order habitat selection for habitat type and composition was weak and varied little between seasons. We found that patterns of fox habitat selection did not mirror habitat selection of Hodotermes (quantified using RSFs), even when feeding on them (4th‐order). Taken together, these results might indicate that bat‐eared foxes’ food resources are homogenously distributed across habitats and that prey other than Hodotermes play an important role in bat‐eared foxes’ space use.  相似文献   

4.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

5.
Hunting regulations for grizzly bears (Ursus arctos) in much of Alaska since 1980 increasingly were designed to reduce bear abundance in the expectation such regulations would lead to increased harvests by hunters of moose (Alces alces) and caribou (Rangifer tarandus). Regulations were liberalized during 1980–2010 primarily in the area we termed the Liberal Grizzly Bear Hunting Area (hereafter Liberal Hunt Area) which encompassed 76.2% of Alaska. By 2010, these changes resulted in longer hunting seasons (100% of Liberal Hunt Area had seasons > 100 days, 99.7% > 200 days, and 67.8% > 300 days), more liberal bag limits (99.1% of the Liberal Hunt Area with a bag limit ≥ 1/yr and 10.1% with a bag limit ≥ 2/yr), and widespread waiver of resident tag fees (waived in 95.7% of the Liberal Hunt Area). During 1995–2010, there were 124 changes that made grizzly bear hunting regulations more liberal and two making them more conservative. The 4-year mean for grizzly bear kills by hunters increased 213% between 1976–1980 (387 grizzly bears) and 2005–2008 (823 grizzly bears). Since 2000, long-term research studies on grizzly populations in the Liberal Hunt Area have been terminated without replacement. Management of large predators by the State of Alaska is constrained by a 1994 state statute mandating “intensive management” in areas classified as important for human consumptive use of ungulates. Current grizzly bear management in the Liberal Hunt Area is inconsistent with the recommendations of the National Research Council's 1997 report on predator management in Alaska. Current attitudes, policies and absence of science-based management of grizzly bears in Alaska are increasingly similar to those that resulted in the near extirpation of grizzly bears south of Canada in the 19th and 20th centuries. If current trends continue, they increase risks to portions of the largest and most intact population of grizzly bears in North America. © 2011 The Wildlife Society.  相似文献   

6.
When abundant, seeds of the high‐elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone‐producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One‐third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high‐elevation WBP habitat may be diminishing for bears residing in multiple‐use areas.  相似文献   

7.
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.  相似文献   

8.
To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0–20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.  相似文献   

9.
Access management is among the most important conservation actions for grizzly bears in North America. In Alberta, Canada, nearly all grizzly bear mortalities are caused by humans and occur near roads and trails. Consequently, understanding how bears move relative to roads is of crucial importance for grizzly bear conservation. We present the first application of step‐selection functions to model habitat selection and movement of grizzly bears. We then relate this to a step‐length analysis to model the rate of movement through various habitats. Grizzly bears of all sex and age groups were more likely to select steps closer to roads irrespective of traffic volume. Roads are associated with habitats attractive to bears such as forestry cutblocks, and models substituting cutblocks for roads outperformed road models in predicting bear selection during day, dawn, and dusk time periods. Bear step lengths increased near roads and were longest near highly trafficked roads indicating faster movement when near roads. Bear selection of roads was consistent throughout the day; however, time of day had a strong influence over selection of forest structure and terrain variables. At night and dawn, bears selected forests of intermediate age between 40 and 100 yr, and bears selected older forests during the day. At dawn, bears selected steps with higher solar radiation values, whereas, at dusk, bears chose steps that were significantly closer to edges. Because grizzly bears use areas near roads during spring and most human‐caused mortalities occur near roads, access management is required to reduce conflicts between humans and bears. Our results support new conservation guidelines in western North America that encourage the restriction of human access to roads constructed for resource extraction.  相似文献   

10.
Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed to CDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state‐space models to infer the temporal dynamics of CDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed to CDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short. CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within the GYE carnivore community or is periodically reintroduced from distant regions with larger host populations.  相似文献   

11.
Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4–27.3°C) and hot (27.9–40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.  相似文献   

12.
Avoiding humans will be more difficult and energetically costly for animals as outdoor recreation increases and people venture farther into wildland areas that provide high-quality habitat for wildlife. Restricting human access can be an attractive management tool to mitigate effects of human recreation activities on wildlife; however, the efficacy of such measures is rarely assessed. In 1982, Yellowstone National Park identified areas important to grizzly bears (Ursus arctos) to help protect critical grizzly bear habitat and reduce the likelihood of human injuries by bears. Referred to as bear management areas (BMAs), human access is restricted in these areas for 2–8 months each year, with timing and type of restrictions varying by area. We examined 2 datasets to evaluate grizzly bear selection of BMAs and differences of bear density in BMAs and non-BMAs. First, we used 17 years of recent global positioning system telemetry data for grizzly bears to assess their selection of BMAs during periods when human access was allowed, and when access was restricted. We used step-selection functions to test the hypothesis that bears spend time in places that allow them to avoid people and select quality food sources. There was support that grizzly bears differentially select for BMAs regardless of whether human access was restricted at the time, compared with areas outside BMAs, and that selection changed with sex and season. Only males during the summer and hyperphagic seasons changed their selection of BMAs based on whether access restrictions were in place, and overall, male bears preferred unrestricted BMAs (BMAs without restrictions in place). Females preferentially selected BMAs regardless of whether the area had access restrictions in place only during the mating season. Individuals varied widely in their preference for BMAs and access restrictions. Bears likely choose to spend time in BMAs based on available food resources rather than restrictions to human access. Supporting this interpretation, our analyses indicated that a greater proportion of BMA in an area was associated with higher densities of grizzly bear. Thus, restrictions to human access likely help reduce the potential for human–bear interactions, accomplishing one of the original objectives for establishing the BMAs.  相似文献   

13.
Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.  相似文献   

14.
Population effects of competition between large carnivore species may be evident by contrasting actual distributions of putative competitors against predictions of inherent landscape quality for each species. Such comparison can be insightful if covariation with external factors known to influence the occurrence, density, or persistence of each species over space and time can be controlled. We used systematically‐distributed DNA hair‐trap stations to sample the occurrence of black bears (Ursus americanus) and grizzly bears (U. arctos) across 5496 km2 in southeastern British Columbia, Canada. We describe interspecific landscape partitioning according to terrain, vegetation and land‐cover variables at 2 spatial scales. We developed multivariate models to predict the potential distribution of each species. At sampling site‐session combinations that detected either species, we then investigated whether the expected or actual occurrence of each influenced the likelihood of detecting the other while controlling for human influence and inherent landscape quality. Black bears were more likely than grizzly bears to occur in gentle, valley bottom terrain with lower proportions of open habitats. Each species also was detected less frequently with the other species than predicted by their respective models; however, the strength of this relationship decreased as landscapes became more characteristic of black bear habitat. As landscapes showed higher inherent potential to support grizzly bears, black bears occurred more than model prediction in areas with higher human access and proximity to major highways but less in national parks. As potential to support black bears increased, grizzly bears occurred more than model prediction only in national parks and less with increasing human access and proximity to major highways. Results suggest that competition is occurring between the species, and that the differential response of each species to human disturbance or excessive mortality may influence the outcome and hence landscape partitioning. Moreover, black bears are more likely to benefit from human encroachment into landscapes of high inherent value for grizzly bears than vice versa. Conservation implications relate to potential mediating effects of habitat and human influence on competitive interactions between the species.  相似文献   

15.
Grizzly bears (Ursus arctos) and American black bears (U. americanus) are sympatric in much of Yellowstone National Park. Three primary bear foods, cutthroat trout (Oncorhynchus clarki), whitebark pine (Pinus albicaulis) nuts, and elk (Cervus elaphus), have declined in recent years. Because park managers and the public are concerned about the impact created by reductions in these foods, we quantified bear diets to determine how bears living near Yellowstone Lake are adjusting. We estimated diets using: 1) stable isotope and mercury analyses of hair samples collected from captured bears and from hair collection sites established along cutthroat trout spawning streams and 2) visits to recent locations occupied by bears wearing Global Positioning System collars to identify signs of feeding behavior and to collect scats for macroscopic identification of residues. Approximately 45 ± 22% ( ± SD) of the assimilated nitrogen consumed by male grizzly bears, 38 ± 20% by female grizzly bears, and 23 ± 7% by male and female black bears came from animal matter. These assimilated dietary proportions for female grizzly bears were the same as 10 years earlier in the Lake area and 30 years earlier in the Greater Yellowstone Ecosystem. However, the proportion of meat in the assimilated diet of male grizzly bears decreased over both time frames. The estimated biomass of cutthroat trout consumed by grizzly bears and black bears declined 70% and 95%, respectively, in the decade between 1997–2000 and 2007–2009. Grizzly bears killed an elk calf every 4.3 ± 2.7 days and black bears every 8.0 ± 4.0 days during June. Elk accounted for 84% of all ungulates consumed by both bear species. Whitebark pine nuts continue to be a primary food source for both grizzly bears and black bears when abundant, but are replaced by false-truffles (Rhizopogon spp.) in the diets of female grizzly bears and black bears when nut crops are minimal. Thus, both grizzly bears and black bears continue to adjust to changing resources, with larger grizzly bears continuing to occupy a more carnivorous niche than the smaller, more herbivorous black bear. © 2012 The Wildlife Society.  相似文献   

16.
1. The distribution of the large orb‐weaving spider Argiope trifasciata in old field habitats of North America and the habitat selection process this species used was studied for 2 years. 2. Because web spiders have limited dispersal abilities and an energetically costly prey capture device, they do not have the ability to sample potential foraging sites. Structural complexity of the vegetation to which the web must be attached is relatively easy to assess. The hypothesis that the structural complexity is a primary factor in determining initial web site selection was tested both by relating the natural distribution of the spiders across habitats to vegetational complexity and by manipulating the complexity of the habitats in a series of experiments. 3. Argiope trifasciata was not distributed evenly among three old field vegetation types. Habitat complexity was related to spider density in both years although no measure of insect activity, prey capture, or prey consumption was correlated with spider distribution. 4. Three experimental manipulations were conducted to test the impact of habitat structure on spider establishment: (1) the amount of natural vegetation was reduced, (2) structures were added to a simple habitat, and (3) the complexity of the structures added was varied. In each case, spiders were introduced and establishment of webs was monitored. In all manipulations, spider establishment was related to the complexity of the substrate available. 5. These results are important for understanding the cues that influence foraging site selection and therefore provide insight into the distribution of species with limited dispersal abilities and high site investment requirements.  相似文献   

17.
We radio‐tracked seven Cape clawless otters (Aonyx capensis) (Schinz, 1821) in two rivers in the Western Cape Province, South Africa, providing data on their habitat selection. Habitat type was investigated at a scale that enabled us to separate the effects of types of riparian vegetation, geomorphology and anthropogenic influences. Otters selected areas with boulders and/or reed beds, which provided high crab density and shelter. Direct observations showed that they used two foraging modes depending on the habitat selected. Otters could select open water within c. 8 m of the shore, dive and surface with or without prey. Otherwise hunting involved them moving into shallow water (c. 0.2 m deep), and walking along the substrate feeling for prey with their forefeet. Disturbed possible prey items were then caught with the forefeet.  相似文献   

18.
American black bears (Ursus americanus) were extirpated from Oklahoma, USA, in the early twentieth century but have since recolonized eastern portions of the state after immigrating from Arkansas, where they were successfully translocated. Within the last 2 decades, a population of black bears was detected in the Oklahoma Ozark region, prompting studies to determine population size, growth rate, and genetic makeup. To understand how black bears were recolonizing the human-dominated landscape, we investigated resource selection at 2 scales. Between 2011 and 2016, we collected global positioning system collar spatial data for 10 males and 13 females. We calculated average kernel density home ranges on a seasonal scale for all collared bears. We used generalized linear mixed models to calculate resource selection functions at the study area, defined by locations of all radio-collared black bears (second order) and the scale of individual black bear home ranges (third order). Resource selection did not differ significantly by sex. Black bears across seasons and scales selected riparian forest and moist oak (Quercus spp.) forest land cover types and mostly selected against indicators of human activity (e.g., pasture-prairie, anthropogenic land cover types, roads, and areas of high human population density). Black bears also selected areas with rugged terrain at high elevations, although not consistently across seasons and scales. Black bear recolonization appeared to be negatively affected by areas and features characterized as human-altered. Further expansion of the range of black bears may be limited by anthropogenic disturbance in the region. © 2021 The Wildlife Society.  相似文献   

19.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

20.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号