首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Infectious pancreatic necrosis (IPN) is a viral disease currently presenting a major problem in the production of Atlantic salmon (Salmon salar). IPN can cause significant mortality to salmon fry within freshwater hatcheries and to smolts following transfer to seawater, although challenged populations show clear genetic variation in resistance. To determine whether this genetic variation includes loci of major effect, a genomewide quantitative trait loci (QTL) scan was performed within 10 full-sib families that had received a natural seawater IPN challenge. To utilize the large difference between Atlantic salmon male and female recombination rates, a two-stage mapping strategy was employed. Initially, a sire-based QTL analysis was used to detect linkage groups with significant effects on IPN resistance, using two to three microsatellite markers per linkage group. A dam-based analysis with additional markers was then used to confirm and position any detected QTL. Two genomewide significant QTL and one suggestive QTL were detected in the genome scan. The most significant QTL was mapped to linkage group 21 and was significant at the genomewide level in both the sire and the dam-based analyses. The identified QTL can be applied in marker-assisted selection programs to improve the resistance of salmon to IPN and reduce disease-related mortality.  相似文献   

2.
This study investigated the effect of a major QTL for resistance to IPN in salmon on performance and production traits. The traits studied were related to growth, fillet and gutted yields, and fat content. Two different analyses were performed: (1) regression of the phenotypic data of the production traits on the predicted number of resistant IPN‐QTL alleles in individuals and (2) a variance component analysis using the (co)variance matrix calculated at the putative location of the QTL. No significant effect of the QTL was detected on any of the traits investigated by either method. The result has important practical implications in that it encourages the use of MAS to reduce the risks and impact of IPN mortality.  相似文献   

3.
《Genomics》2021,113(6):3842-3850
Genetic resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic salmon is a rare example of a trait where a single locus (QTL) explains almost all of the genetic variation. Genetic marker tests based on this QTL on salmon chromosome 26 have been widely applied in selective breeding to markedly reduce the incidence of the disease. In the current study, whole genome sequencing and functional annotation approaches were applied to characterise genes and variants in the QTL region. This was complemented by an analysis of differential expression between salmon fry of homozygous resistant and homozygous susceptible genotypes challenged with IPNV. These analyses pointed to the NEDD-8 activating enzyme 1 (nae1) gene as a putative functional candidate underlying the QTL effect. The role of nae1 in IPN resistance was further assessed via CRISPR-Cas9 knockout of the nae1 gene and chemical inhibition of the nae1 protein activity in Atlantic salmon cell lines, both of which resulted in highly significant reduction in productive IPNV replication. In contrast, CRISPR-Cas9 knockout of a candidate gene previously purported to be a cellular receptor for the virus (cdh1) did not have a major impact on productive IPNV replication. These results suggest that nae1 is the causative gene underlying the major QTL affecting resistance to IPNV in salmon, provide further evidence for the critical role of neddylation in host-pathogen interactions, and highlight the value in combining high-throughput genomics approaches with targeted genome editing to understand the genetic basis of disease resistance.  相似文献   

4.
Fish pasteurellosis is a bacterial disease causing important losses in farmed fish, including gilthead sea bream, a teleost fish of great relevance in marine aquaculture. We report in this study a QTL analysis for resistance to fish pasteurellosis in this species. An experimental population of 500 offspring originating from eight sires and six dams in a single mass‐spawning event was subjected to a disease challenge with Photobacterium damselae subsp. piscicida (Phdp), the causative agent of fish pasteurellosis. A total of 151 microsatellite loci were genotyped in the experimental population, and half‐sib regression QTL analysis was carried out on two continuous traits, body length at time of death and survival, and for two binary traits, survival at day 7 and survival at day 15, when the highest peaks of mortality were observed. Two significant QTLs were detected for disease resistance. The first one was located on linkage group LG3 affecting late survival (survival at day 15). The second one, for overall survival, was located on LG21, which allowed us to highlight a potential marker (Id13) linked to disease resistance. A significant QTL was also found for body length at death on LG6 explaining 5–8% of the phenotypic variation.  相似文献   

5.
Glycine betaine has been suggested to improve the maintenance of ionic and osmotic homeostasis during seawater adaptation in teleost fish. Arsenobetaine may also behave as an osmolyte, due to its structural similarity to glycine betaine. The influence of seawater adaptation on intestinal uptake and muscle accumulation of arsenobetaine in the teleost Atlantic salmon (Salmo salar L.) was investigated. Atlantic salmon (freshwater and seawater adapted) were given a single oral dose of arsenobetaine, which was absorbed over the intestine within 6 h after exposure. Seawater adapted Atlantic salmon had significantly higher levels of accumulated arsenobetaine in blood compared to the freshwater adapted salmon. However, seawater adaptation had no effect on the levels of accumulated arsenobetaine in muscle tissue. Similar retention of the administered dose was found in muscle tissue in both freshwater and seawater adapted salmon, with 49+/-6% and 50+/-10% retention after 144 h, respectively. Results indicate that muscle retention was not influenced by salinity in seawater adapting teleosts.  相似文献   

6.
Sockeye salmon were transferred rapidly from freshwater to seawater and the changes in gill morphology, in particular the distribution and sizes of chloride and mucous cells on the afferent filamental surface examined. Salmon that successfully adapted to seawater were compared with salmon that did not adapt to seawater and died as a consequence of osmoregulatory failure. The number of mucus cells (density), determined from scanning electron microscopy, increased significantly after seawater challenge. A greater increase in mucus cell density occurred in the salmon that failed to adapt to seawater. Light microscopy of transverse sections of gills detected no difference in mucus cell numbers after seawater challenge. It is proposed that mucus cells that lie just beneath the gill epithelium are activated in response to the seawater challenge, and migrate and open onto the epithelium. Freshwater-adapted salmon that had low densities of chloride cells prior to the seawater challenge failed to adapt, whereas salmon that had high densities of chloride cells adapted successfully to seawater. In the latter, the density of chloride cells on the afferent surface decreased after 30 days in seawater. The apical surface of the chloride cells of freshwater-adapted sockeye were either smooth or covered with microvilli. A greater proportion of microvilli-covered chloride cells occurred in the freshwater-adapted salmon that subsequently adapted to seawater.  相似文献   

7.
Major gene resistance to sunflower downy mildew (Plasmopara halstedii) races 304 and 314 was found to segregate independently from the resistance to races 334, 307 and 304 determined by the gene Pl2, already positioned on Linkage Group (LG) 8 of sunflower molecular maps. Using a consensus SSR-SNP map constructed from the INEDI RIL population and a new RIL population FU?×?PAZ2, the positions of Pl2 and Pl5 were confirmed and the new gene, denoted Pl21, was mapped on LG13, at 8?cM from Pl5. The two RIL populations were observed for their quantitative resistance to downy mildew in the field and both indicated the existence of a QTL on LG8 at 20-40?cM from the major resistance gene cluster. In addition, for the INEDI population, a strong QTL on LG10, reported previously, was confirmed and a third QTL was mapped on LG7. A growth chamber test methodology, significantly correlated with field results, also revealed the major QTL on LG10, explaining 65?% of variability. This QTL mapped in the same area as a gene involved in stomatal opening and root growth, which may be suggested as a possible candidate to explain the control of this character. These results indicate that it should be possible to combine major genes and other resistance mechanisms, a strategy that could help to improve durability of sunflower resistance to downy mildew.  相似文献   

8.
9.
We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.  相似文献   

10.
Identifying quantitative trait loci (QTL) for viral disease resistance is of particular importance in selective breeding programs of fish species. Genetic markers linked to QTL can be useful in marker-assisted selection (MAS) for elites resistant to specific pathogens. Here, we conducted a genome scan for QTL associated with Singapore grouper iridovirus (SGIV) resistance in an Asian seabass (Lates calcarifer) family, using a high-density linkage map generated with genotyping-by-sequencing. One genome-wide significant and three suggestive QTL were detected at LG21, LG6, LG13, and LG15, respectively. The phenotypic variation explained (PVE) by the four QTL ranged from 7.5 to 15.6%. The position of the most significant QTL at LG21 was located between 31.88 and 36.81 cM. The SNP marker (SNP130416) nearest to the peak of this QTL was significantly associated with SGIV resistance in an unrelated multifamily population. One candidate gene, MECOM, close to the peak of this QTL region, was predicted. Evidence of alternative splicing was observed for MECOM and one specific category of splicing variants was differentially expressed at 5 days post-SGIV infection. The QTL detected in this study are valuable resources and can be used in the selective breeding programs of Asian seabass with regard to resistance to SGIV.  相似文献   

11.
Powdery mildew (PM) is a common and serious disease of mungbean [Vigna radiata (L.) Wilczek]. A few quantitative trait loci (QTL) for PM resistance in mungbean have been reported. The objective of this study was to locate QTL for PM resistance in two resistant accessions V4718 and RUM5. Simple sequence repeat markers were analyzed in an F2 population from a cross between Kamphaeng Saen 1 (KPS1; susceptible to PM) and V4718 (resistant to PM), and in F2 and BC1F1 populations from a cross between Chai Nat 60 (CN60; susceptible to PM) and RUM5 (resistant to PM). Progenies of 134 F2:3 and F2:4 lines derived from KPS1 × V4718, and 190 F2:3 and 74 BC1F1:2 lines derived from CN60 × RUM5 and CN60 × (CN60 × RUM5), respectively, were evaluated for response to PM under field conditions. Multiple interval mapping identified a major QTL on linkage group (LG) 9 and two minor QTL on LG4 for the resistance in V4718, and detected two major QTL on LG6 and LG9 and one minor QTL on LG4 for the resistance in RUM5. Comparative linkage analysis of the QTL for PM resistance in this study and in previous reports suggests that the resistance QTL on LG9 in V4718, RUM5, ATF3640 and VC6468-11-1A are the same locus or linked. One QTL on LG4 is the same in three sources (V4718, RUM5 and VC1210A). Another QTL on LG6 is the same in two sources (RUM5 and VC6468-11-1A). In addition, one QTL in V4718 on LG4 appears to be a new resistance locus. These different resistance loci will be useful for breeding durably PM-resistant mungbean cultivars.  相似文献   

12.
Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study.  相似文献   

13.
Pancreas disease (PD), caused by a salmonid alphavirus (SAV), has a large negative economic and animal welfare impact on Atlantic salmon aquaculture. Evidence for genetic variation in host resistance to this disease has been reported, suggesting that selective breeding may potentially form an important component of disease control. The aim of this study was to explore the genetic architecture of resistance to PD, using survival data collected from two unrelated populations of Atlantic salmon; one challenged with SAV as fry in freshwater (POP 1) and one challenged with SAV as post-smolts in sea water (POP 2). Analyses of the binary survival data revealed a moderate-to-high heritability for host resistance to PD in both populations (fry POP 1 h2~0.5; post-smolt POP 2 h2~0.4). Subsets of both populations were genotyped for single nucleotide polymorphism markers, and six putative resistance quantitative trait loci (QTL) were identified. One of these QTL was mapped to the same location on chromosome 3 in both populations, reaching chromosome-wide significance in both the sire- and dam-based analyses in POP 1, and genome-wide significance in a combined analysis in POP 2. This independently verified QTL explains a significant proportion of host genetic variation in resistance to PD in both populations, suggesting a common underlying mechanism for genetic resistance across lifecycle stages. Markers associated with this QTL are being incorporated into selective breeding programs to improve PD resistance.  相似文献   

14.
15.
Furunculosis (Aeromonoas salmonicida) is an important disease in Atlantic salmon (Salmo salar) farming. Vaccination and selective breeding for increased resistance to the disease on the basis of challenge tests of unvaccinated fish are used as complementary prophylactic methods. An important issue is whether genetic predisposition to infection is consistent across vaccinated and unvaccinated fish. Hence, the main objective of this study was to determine the magnitude of the genetic associations (correlations) between resistance to furunculosis in vaccinated and unvaccinated fish, and to estimate the magnitude of the correlation of resistance to furunculosis with resistance to the viral diseases infectious pancreatic necrosis (IPN) and infectious salmon anaemia (ISA). Sub-samples of unvaccinated and vaccinated salmon from 150 full-sib families were subjected to separate cohabitation challenge tests. Substantial genetic variation was found in resistance to furunculosis in both the unvaccinated (heritabilities of 0.51 ± 0.05) and vaccinated (0.39 ± 0.06) fish. However, the genetic correlation between resistance to furunculosis in the two groups was low (0.32 ± 0.13), indicating a weak genetic association between resistance in the two groups. Hence, the current selection strategy on the basis of challenge tests of unvaccinated fish is likely to produce low genetic improvement in resistance to furunculosis under field conditions, where fish are vaccinated with an effective vaccine. Evidence was found of significantly favourable genetic associations of resistance to furunculosis in unvaccinated (but less so for vaccinated) fish with resistance to both IPN and ISA (unvaccinated fish), indicating that vaccination 'mask' genetic associations between resistance to different diseases.  相似文献   

16.
A genetic map populated with RAD and SSR markers was created from F1 progeny of a stem rust-susceptible and stem rust-resistant parent of perennial ryegrass (Lolium perenne). The map supplements a previous map of this population by having markers in common with several other Lolium spp. maps including EST-SSR anchor markers from a consensus map published by other researchers. A QTL analysis was conducted with disease severity and infection type data obtained by controlled inoculation of the population with each of two previously characterized pathotypes of Puccinia graminis subsp. graminicola that differ in virulence to different host plant genotypes in the F1 population. Each pathotype activated a specific QTL on one linkage group (LG): qLpPg1 on LG7 for pathotype 101, or qLpPg2 on LG1 for pathotype 106. Both pathotypes also activated a third QTL in common, qLpPg3 on LG6. Anchor markers, present on a consensus map, were located in proximity to each of the three QTL. These QTL had been detected also in previous experiments in which a genetically heterogeneous inoculum of the stem rust pathogen activated all three QTL together. The results of this and a previous study are consistent with the involvement of the pathotype-specific QTL in pathogen recognition and the pathotype-nonspecific QTL in a generalized resistance response. By aligning the markers common to other published reports, it appears that two and possibly all three of the stem rust QTL reported here are in the same general genomic regions containing some of the L. perenne QTL reported to be activated in response to the crown rust pathogen (P. coronata).  相似文献   

17.
Gyrodactylus salaris Malmberg, 1957 is a freshwater monogenean ectoparasite of salmonids, first recorded in Norway in 1975 and responsible for extensive epizootics in wild Atlantic salmon Salmo salar L. The susceptibility of different populations of Atlantic salmon to G. salaris infection differs markedly, with fish from the Baltic being characterised as relatively resistant whereas those from Norway or Scotland are known to be (extremely) susceptible. Resistance to Gyrodactylus infection in salmonids has been found to be heritable and a polygenic mechanism of control has been hypothesised. The current study utilises a 'Quantitative trait loci' (QTL) screening approach in order to identify molecular markers linked to QTL influencing G. salaris resistance in B1 backcrosses of Baltic and Scottish salmon. Infection patterns in these fish exhibited 3 distinct types; susceptible (exponential parasite growth), responding (parasite load builds before dropping) and resistant (parasite load never increases). B1 backcross fish were screened at 39 microsatellite markers and single marker-trait associations were examined using general linear modelling. We identified 10 genomic regions associated with heterogeneity in both innate and acquired resistance, explaining up to 27.3% of the total variation in parasite loads. We found that both innate and acquired parasite resistance in Atlantic salmon are under polygenic control, and that salmon would be well suited to a selection programme designed to quickly increase resistance to G. salaris in wild or farmed stocks.  相似文献   

18.
Two quantitative trait loci (QTLs), (QTLAR1 and QTLAR2) associated with resistance to ascochyta blight, caused by Ascochyta rabiei, have been identified in a recombinant inbred line population derived from a cross of kabuli×desi chickpea. The population was evaluated in two cropping seasons under field conditions and the QTLs were found to be located in two different linkage groups (LG4a and LG4b). LG4b was saturated with RAPD markers and four of them associated with resistance were sequenced to give sequence characterized amplified regions (SCARs) that segregated with QTLAR2. This QTL explained 21% of the total phenotypic variation. However, QTLAR1, located in LG4a, explained around 34% of the total phenotypic variation in reaction to ascochyta blight when scored in the second cropping season. This LG4a region only includes a few markers, the flower colour locus (B/b), STMS GAA47, a RAPD marker and an inter-simple-sequence-repeat and corresponds with a previously reported QTL. From the four SCARs tagging QTLAR2, SCAR (SCY17590) was co-dominant, and the other three were dominant. All SCARs segregated in a 1:1 (presence:absence) ratio and the scoring co-segregated with their respective RAPD markers. QTLAR2 on LG4b was mapped in a highly saturated genomic region covering a genetic distance of 0.8 cM with a cluster of nine markers (three SCARs, two sequence-tagged microsatellite sites (STMS) and four RAPDs). Two of the four SCARs showed significant alignment with genes or proteins related to disease resistance in other species and one of them (SCK13603) was sited in the highly saturated region linked to QTLAR2. STMS TA72 and TA146 located in LG4b were described in previous maps where QTL for blight resistance were also localized in both inter and intraspecific crosses. These findings may improve the precision of molecular breeding for QTLAR2 as they will allow the choice of as much polymorphism as possible in any population and could be the starting point for finding a candidate resistant gene for ascochyta blight resistance in chickpea.  相似文献   

19.
Synopsis Seasonal changes in hypoosmoregulatory ability were compared in landlocked and anadromous strains of Arctic charr and Atlantic salmon. Seawater adaptability was assessed using periodic 48 h seawater challenge tests with 25. seawater. The landlocked strains of Arctic charr, two from northern Sweden and one from Southern Norway, displayed similar seasonal changes in seawater adaptability as the anadromous strain. Seawater tolerance increased during spring and remained high until the end of July — early August after which it declined. The two strains of Atlantic salmon displayed different seasonal patterns in hypoosmoregulatory ability. The anadromous strain showed a pronounced seasonal pattern with maximal seawater adaptability in early June. In contrast, seawater tolerance in the landlocked strain improved steadily during spring and remained high until late autumn. During the period of enhanced seawater tolerance, hypoosmoregulatory ability increased significantly with body size in both Arctic charr and anadromous Atlantic salmon. The minimum size at which fish were able to regulate plasma sodium following seawater transfer at a level comparable to freshwater levels (<170 mmol I–1) differed significantly between anadromous Atlantic salmon (ca. 14 cm) and Arctic charr (ca. 22 cm). The results show that seasonal changes in hypoosmoregulatory ability are present in both Atlantic salmon and Arctic charr, and that these physiological traits are retained in the corresponding landlocked strains. However, the seasonal pattern of seawater adaptability as well as the minimum size at which seawater tolerance occurs differs between the two species.  相似文献   

20.
Soybean [Glycine max (L.) Merr.] was one of the most important legume crops in the world in 2010. Japanese beetles (JB; Popillia japonica, Newman) in the US were an introduced and potentially damaging insect pest for soybean. JBs are likely to spread across the US if global warming occurs. Resistance to JB in soybean was previously reported only in plant introductions. The aims here were to identify loci underlying resistance to JB herbivory in recombinant inbred lines (RILs) derived from the cross of Essex × Forrest cultivars (EF94) and to correlate those with loci with factors that confer insect resistance in soybean cultivars. The RIL population was used to map 413 markers, 238 satellite markers and 177 other DNA markers. Field data were from two environments over 2 years. Pest severity (PS) measured defoliation on a 0–9 scale. Pest incidence (PI) was the percentage of plants within each RIL with beetles on them. Antibiosis and antixenosis data were from feeding assays with detached leaves in petri plates. Five QTL were detected for the mean PS field trait (16% < R 2 < 27%). The loci were within the intervals Satt632–A2D8 on linkage group (LG) A2 (chromosome 8); Satt583–Satt415 on LG B1 (11); Satt009–Satt530 on LG N (3); and close to two markers OB02_140 (LG E; 20 cM from Satt572) and OZ15_150 LG (19 cM from Satt291 C2). Two QTL were detected for the mean PI field trait (16% < R 2 < 18%) close to Satt385 on LG A1 and Satt440 on LG I. The no choice feeding studies detected three QTL that were significant; two for antixenosis (22% < R 2 < 24%) between Satt632–A2D8 on LG A2 (8) and Sat_039–Satt160 on LG F (13); and a major locus effect (R 2 = 54%) for antibiosis on LG D2 (17) between Satt464–Satt488. Therefore, loci underlying resistance to JB herbivory were a mixture of major and minor gene effects. Some loci were within regions underlying resistance to soybean cyst nematode (LGs A2 and I) and root knot nematode (LG F) but not other major loci underlying resistance to nematode or insect pests (LGs G, H and M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号