首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 274 毫秒
1.
Summary Supplementing oat straw in SSF by Polyporus sp A-336 with xylose, mannose, glucose and arabinogalactan at levels of 5 and 10% of straw weight stimulated lignin degradation and cellulose hydrolysis. Degradation of lignin, hemicellulose and cellulose was monitored for 30 days in plain straw, and straw plus xylose and showed that xylose shortened the lag in lignin breakdown and slowed hemicellulose utilization. At 24 days, similar polymer losses occurred in both systems and enzymatic cellulose hydrolysis had reached a maximum of 47% weight loss.  相似文献   

2.
This research shows the effect of dilute acid pretreatment with various sulfuric acid concentrations (0.5–2.0% [wt/vol]) on enzymatic saccharification and fermentation yield of rye straw. After pretreatment, solids of rye straw were suspended in Na citrate buffer or post-pretreatment liquids (prehydrolysates) containing sugars liberated after hemicellulose hydrolysis. Saccharification was conducted using enzymes dosage of 15 or 25 FPU/g cellulose. Cellulose saccharification rate after rye straw pretreatment was enhanced by performing enzymatic hydrolysis in sodium citrate buffer in comparison with hemicellulose prehydrolysate. The maximum cellulose saccharification rate (69%) was reached in sodium citrate buffer (biomass pretreated with 2.0% [wt/vol] H2SO4). Lignocellulosic complex of rye straw after pretreatment was subjected to separate hydrolysis and fermentation (SHF) or separate hydrolysis and co-fermentation (SHCF). The SHF processes conducted in the sodium citrate buffer using monoculture of Saccharomyces cerevisiae (Ethanol Red) were more efficient compared to hemicellulose prehydrolysate in respect with ethanol yields. Maximum fermentation efficiency of SHF processes obtained after rye straw pretreatment at 1.5% [wt/vol] H2SO4 and saccharification using enzymes dosage of 25 FPU/g in sodium citrate buffer, achieving 40.6% of theoretical yield. However, SHCF process using cocultures of pentose-fermenting yeast, after pretreatment of raw material at 1.5% [wt/vol] H2SO4 and hydrolysis using enzymes dosage of 25 FPU/g, resulted in the highest ethanol yield among studied methods, achieving 9.4 g/L of ethanol, corresponding to 55% of theoretical yield.  相似文献   

3.
A pilot plant (IBUS) consisting of three reactors was used for hydrothermal treatment of wheat straw (120-150 kg/h) aiming at co-production of bioethanol (from sugars) and electricity (from lignin). The first reactor step was pre-soaking at 80 degrees C, the second extraction of hemicellulose at 170-180 degrees C and the third improvement of the enzymatic cellulose convertibility at 195 degrees C. Water added to the third reactor passed countercurrent to straw. The highest water addition (600 kg/h) gave the highest hemicellulose recovery (83%). With no water addition xylose degradation occurred resulting in low hemicellulose recovery (33%) but also in high glucose yield in the enzymatic hydrolysis (72 g/100g glucose in straw). Under these conditions most of the lignin was retained in the fibre fraction, which resulted in a lignin rich residue with high combustion energy (up to 31 MJ/kg) after enzymatic hydrolysis of cellulose and hemicellulose.  相似文献   

4.
木质纤维素的定量测定及降解规律的初步研究   总被引:21,自引:2,他引:19  
为了准确地测定稻草及其发酵物中纤维素、半纤维素、木质素的含量,通过差重法进行定量测定,并以此评价白腐菌株Pleurotus sapidus对稻草秸秆的降解状况,结果表明:利用差重法测定稻草发酵物中纤维素、半纤维索、木质素的百分含量是可行的,并能很好地评价白腐菌对稻草的降解规律,即降解过程中纤维素、半纤维素、本质素在前20d降解的很快,之后降解减缓,在50d内,纤维素被降解34.02%,半纤维素被降解56.29%,木质素被降解61.65%。  相似文献   

5.
研究了白腐菌及纤维素复合酶对稻草秸秆的协同生物降解。结果表明,利用黄孢原毛平革菌固态发酵稻草秸秆的过程中,LiP和MnP的最大活力可以达到28.3U/g和12.6U/g,同时,秸秆中的木质素能被有效降解,但纤维素、半纤维素降解率较低。添加黑曲霉所产的纤维素复合酶能有效地促进秸秆腐熟程度。在接入白腐菌培养10天后,每克稻草添加3 IU纤维素酶液并酶解48h可以使稻草秸秆中纤维素降解53.8%,半纤维素降解57.8%,木质素降解44.5%,干物质损失46.3%。此时细胞壁出现大范围破损,整个组织变得松散,秸秆完全腐熟。  相似文献   

6.
The conversion of lignocellulose to valuable products requires I: a fractionation of the major components hemicellulose, cellulose, and lignin, II: an efficient method to process these components to higher valued products. The present work compares liquid hot water (LHW) pretreatment to the soda pulping process and to the ethanol organosolv pretreatment using rye straw as a single lignocellulosic material. The organosolv pretreated rye straw was shown to require the lowest enzyme loading in order to achieve a complete saccharification of cellulose to glucose. At biomass loadings of up to 15% (w/w) cellulose conversion of LHW and organosolv pretreated lignocellulose was found to be almost equal. The soda pulping process shows lower carbohydrate and lignin recoveries compared to the other two processes. In combination with a detailed analysis of the different lignins obtained from the three pretreatment methods, this work gives an overview of the potential products from different pretreatment processes.  相似文献   

7.
Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid   总被引:1,自引:0,他引:1  
Kim JW  Kim KS  Lee JS  Park SM  Cho HY  Park JC  Kim JS 《Bioresource technology》2011,102(19):8992-8999
Liberation of fermentable sugars from recalcitrant lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Here we developed a two-stage pretreatment process using aqueous ammonia and dilute sulfuric acid in a percolation mode to improve production of fermentable sugars from rice straw. Aqueous NH? was used in the first stage which removed lignin selectively but left most of cellulose (97%) and hemicellulose (77%). Dilute acid was applied in the second stage which removed most of hemicellulose, partially disrupted the crystalline structure of cellulose, and thus enhanced enzymatic digestibility of cellulose in the solids remaining. Under the optimal pretreatment conditions, the enzymatic hydrolysis yields of the two-stage treated samples were 96.9% and 90.8% with enzyme loadings of 60 and 15FPU/g of glucan, respectively. The overall sugar conversions of cellulose and hemicellulose into glucose and xylose by enzymatic and acid hydrolysis reached 89.0% and 71.7%, respectively.  相似文献   

8.
A comparison of the ligninolytic, cellulolytic and hemicellulolytic abilities of an alkaliphilic white-rot fungus. Coprinus fimetarius, on wheat straw under varying conditions of solid-substrate fermentation is presented. The extent of fractional degradation (percentage of the original dry weight of the fraction) of straw under an optimized set of cultural conditions (pH 9·0, moisture 65%, temperature 37°C, period 21 days) was in the following order: lignin (45%), cellulose (42%), hemicellulose (27%). Urea nitrogen favoured the degradation of lignin as well as cellulose and hemicellulose up to a certain level (1·5% sterile urea or 3% unsterile urea on a dry weight basis) beyond which the degradation of lignin was relatively more adversely affected than cellulose. The addition of phosphorus and sulphur was found essential for selective lignin removal. Increasing the C:N ratio by addition of free carbohydrates resulted in an overall decrease in the degradation wherein cellulose utilization was the most affected event. The pre-treatment (physical or chemical) of the substrate caused a general increase in biodegradation of lignin, cellulose and hemicellulose. The degrading activity of the fungus declined with the scaling-up of the fermentation particularly under non-sterile conditions.  相似文献   

9.
Treatment of wheat straw with 1N trifluoroacetic acid (TFA) for 7 h at reflux temperature yielded 23% xylose based upon initial straw weight. This corresponds to about an 80% xylose yield based on the xylan content of the hemicellulose. The cellulose component of wheat straw was largely unaffected, as evidenced by low glucose yields. Decomposition of xylose by prolonged refluxing (23 h) was minimal in 1N TFA compared to 1N HCl. Treatment of wheat straw with refluxing 1N TFA converts about 10% of the lignin initially present in straw into water-soluble lignin fragments. Fermentation of the xylose-rich wheat straw hydrolyzate to ethanol with Pachysolen tannophilus was comparable to the fermentation of reagent grade xylose, indicating that furfural and toxic lignin by-products were not produced by 1N TFA in sufficient amounts to impair cell growth and ethanol production. Cellulase treatment of the wheat straw residue after TFA hydrolysis resulted in a 70-75% conversion of the cellulose into glucose.  相似文献   

10.
为确定黄孢原毛平革菌对不同植物材料的去木质化作用,以pH、干物质重、半纤维素、纤维素和木质素为主要技术指标,比较黄孢原毛平革菌对松木、稻草和芦苇降解能力的差异。松木、芦苇在发酵过程中pH呈下降趋势,稻草呈上升趋势。在干物质重、半纤维素、纤维素降解率三个指标上皆为松木〈芦苇〈稻草,在木质素降解率上则为松木〈稻草〈芦苇,且差异显著。表明黄孢原毛平革菌对不同植物材料去木质化能力有较大差异,其中芦苇的木质素降解率为13%,是三种材料中最易于被去木质化的。  相似文献   

11.
Dilute acid pretreatment of rye straw and bermudagrass for ethanol production   总被引:25,自引:0,他引:25  
Sun Y  Cheng JJ 《Bioresource technology》2005,96(14):1599-1606
Ethanol production from lignocellulosic materials provides an alternative energy production system. Rye and bermudagrass that are used in hog farms for nutrient uptake from swine wastewater have the potential for fuel ethanol production because they have a relative high cellulose and hemicellulose content. Dilute sulfuric acid pretreatment of rye straw and bermudagrass before enzymatic hydrolysis of cellulose was investigated in this study. The biomass at a solid loading rate of 10% was pretreated at 121 degrees C with different sulfuric acid concentrations (0.6, 0.9, 1.2 and 1.5%, w/w) and residence times (30, 60, and 90 min). Total reducing sugars, arabinose, galactose, glucose, and xylose in the prehydrolyzate were analyzed. In addition, the solid residues were hydrolyzed by cellulases to investigate the enzymatic digestibility. With the increasing acid concentration and residence time, the amount of arabinose and galactose in the filtrates increased. The glucose concentration in the prehydrolyzate of rye straw was not significantly influenced by the sulfuric acid concentration and residence time, but it increased in the prehydrolyzate of bermudagrass with the increase of pretreatment severity. The xylose concentration in the filtrates increased with the increase of sulfuric acid concentration and residence time. Most of the arabinan, galactan and xylan in the biomass were hydrolyzed during the acid pretreatment. Cellulose remaining in the pretreated feedstock was highly digestible by cellulases from Trichoderma reesei.  相似文献   

12.
Summary Wheat straw was treated with ozone to remove the lignin and increase its biodegradability. The attack of ozone on straw is not selective. Lignin and carbohydrates are oxidized concurrently though the rate of reaction with the latter is slower. A 50% reduction of the original lignin content is optimal for enzymatic hydrolysis. After treatment, 75% of the cellulose in straw is degraded within 24 h as compared to 20% in untreated straw. During ozonation lignin is converted to soluble products which to a great extent are biodegradable and thus yield a useful byproduct. At the moment, ozonation ranks among the more expensive methods of treatment. However, the economics may be improved by reducing the cost of ozone production; this is likely to take place in the near future due to technological improvements, and by reducing the ozone consumption by optimizing the process of ozonation.  相似文献   

13.
Pressurized low polarity water (PLPW) fractionation of triticale straw was optimized to maximize hemicellulose and lignin yield, and to produce a cellulose rich fraction for biofuels production. The optimum PLPW conditions for hemicellulose yield was determined to be 165 °C, with a flow rate of 115 mL/min, and a solvent-to-solid ratio of 60 mL/g. Hemicellulose and lignin yield generally increased with increasing temperature and solvent-to-solid ratio. There was a small decrease in hemicellulose yield with an increase in flow rate. Minimum lignin content of the triticale straw residue after extraction was predicted to occur at a processing condition of 206 °C, 160 mL/min, and 67 mL/g. PLPW was successful in removing 73-78% of the hemicellulose, leaving a cellulose rich fraction (65% glucose concentration). Lignin was equally distributed between the solid residues and the extracts and most of the hemicellulose was extracted in oligomer form. Remaining solid residues after fractionation were highly digestible by cellulase enzymes.  相似文献   

14.
木质纤维素生物质分布广、产量大、可再生,用于制备生物基能源、生物基材料和生物基化学品。木质纤维素生物质组成复杂,包含纤维素、半纤维素和木质素等,木质素与半纤维素通过共价键、氢键交联形成独特的“包裹结构”,纤维素含有复杂的分子内与分子间氢键,上述因素制约着其资源化利用。生物预处理以其独特优越性成为生物质研究的重要方面。系统阐述了生物预处理过程中木质素降解和基团修饰对纤维素酶解的影响,纤维素含量及结晶区变化,半纤维素五碳糖利用,微观物理结构的改变。进一步提出了以生物预处理为核心的组合预处理、基于不同功能的多酶协同催化体系、木质纤维素组分分级利用和新型高效细菌预处理工艺是生物预处理未来发展的重要趋势。  相似文献   

15.
Three different chemical treatments—sulfur dioxide, ozone, and sodium hydroxide—were applied on cotton straw, and the effect on cell-wall degradability was assessed by using rumen microorganism and Trichoderma reesei cellulase. Sulfur dioxide (applied at 70°C for 72 h) did not change the lignin content of cotton straw but reduced the concentration of hemicellulose by 48%. Ozone exerted a dual effect, both on lignin (a 40% reduction) and hemicellulose (a 54% decrease). The treatment with NaOH did not solublize cell-wall components. The in vitro organic matter digestibility with rumen fluid of cotton straw was increased significantly by ozone and SO2 treatments, by 120% and 50%, respectively, but not by NaOH. T. reesei cellulase was applied on the chemically pretreated cotton straw at a low level (6 filter paper U/g straw, organic matter), and the release of reducing sugars was determined. The highest level of reducing sugars (30.6 g/100 g organic matter) was obtained with the O3-cellulase combination, which solubilized 64% of the cellulose and 88% of the hemicellulose. the SO2- and the NaOH-pretreated cotton straw were hydrolyzed by T. reesei cellulase to the same extent (21 g reducing sugars/100 g organic matter). The rumen fluid digestibility of the enzymatic ally hydrolyzed straw was not increased further over the effect already obtained with the chemical pretreatments. However, the fermentability of the combined treatments was increased markedly. In the O3-cellulase-treated cotton straw, 83% of the rumen fluid digestible material consisted of highly fermentable components. Although ozone proved to be the most potent pretreatment for enzymic saccharification in this study, the absolute result was modest. The limited effect of the combined O3-cellulase treatment was probably associated with the pretreatment limitations, but not with the enzyme level. Based on the differential response of the chemically treated cotton straw to attack by rumen microorganisms on the one hand, and by T. reesei cellulase on the other hand, a hypothesis has been suggested as to the location of lignin and hemicellulose in the cellwall unit of cotton straw.  相似文献   

16.
Cellulosic feedstocks for bioenergy differ in composition and processing requirements for efficient conversion to chemicals and fuels. This study discusses and compares the processing requirements for three lignocellulosic feedstocks??soybean hulls, wheat straw, and de-starched wheat bran. They were ground with a hammer mill to investigate how differences in composition and particle size affect the hydrolysis process. Enzyme hydrolysis was conducted using cellulase from Trichoderma reesei at 50°C and pH 5. Ground fractions were also subjected to dilute sulfuric acid treatment at 125°C, 15 psi for 30 min prior to cellulase treatment. Reducing particle size of biomass resulted in segregated components of feedstock. Grinding wheat straw to particle size <132 ??m resulted in measured lignin content from 20% to ??5% and reduced hemicellulose content. Reducing lignin content increased the effectiveness of enzyme hydrolysis of wheat straw. Particles sized <132 ??m exhibited the highest soluble sugar release upon hydrolysis for all three feedstocks studied. Hemicellulose digestion improved with dilute sulfuric acid treatment with residual hemicellulose content <5% in all three feedstocks after acid treatment. This enhanced the cellulase action and resulted in approximately 1.6-fold increase in sugar availability in de-starched wheat bran and ??1.5-fold for wheat straw and soybean hulls. Higher sugar availability in wheat bran after acid-mediated enzyme treatment correlated to higher ethanol yields during yeast fermentation compared with soybean hulls and wheat straw.  相似文献   

17.
白腐菌是目前已知的唯一能将木质素彻底降解的微生物,而漆酶在木质素分解过程中起着重要的作用,被广泛应用于农作物秸秆或甘蔗渣等多种类型生物质的生物预处理和生物降解。本研究利用白腐菌产漆酶发酵培养基对30株血红密孔菌Pycnoporus sanguineus菌株进行筛选,得到了多株漆酶高产菌株,并研究了血红密孔菌发酵粗酶液和菌丝对烟梗的生物降解条件。研究结果表明:血红密孔菌及其产生的漆酶表现出了对烟梗木质素较强的生物降解能力。在漆酶浓度为40U/mL、温度30℃、pH4.5的条件下处理24h,烟梗中木质素的降解率可达到50.4%,纤维素和半纤维素的降解率分别为17.5%和17.3%;漆酶浓度为5U/mL、温度30℃、pH4.5的条件下处理48h,木质素降解率可达到65.1%。血红密孔菌菌丝也表现出对烟梗较好的生物降解效果,接种培养7d后烟梗中木质素降解率可达30%以上,21d后木质素的降解率可达79.1%,而纤维素和半纤维素的降解率仅为20%和12%左右。本研究不但为生物质材料的生物预处理和生物降解提供了优质的白腐菌及漆酶资源,还为通过烟梗的生物预处理提高烟草梗丝和卷烟品质提供了重要参数,具有一定的应用前景。  相似文献   

18.
Dilute acid as well as water only (hydrothermal) pretreatments often lead to a significant hemicellulose loss to soluble furans and insoluble degradation products, collectively termed as chars and/or pseudo‐lignin. In order to understand the factors contributing to reducing sugar yields from pretreated biomass and the possible influence of hemicellulose derived pseudo‐lignin on cellulose conversion at the moderate to low enzyme loadings necessary for favorable economics, dilute acid pretreatment of Avicel cellulose alone and mixed with beechwood xylan or xylose was performed at various severities. Following pretreatment, the solids were enzymatically hydrolyzed and characterized for chemical composition and physical properties by NMR, FT‐IR, and SEM imaging. It was found that hemicelluloses (xylan) derived‐pseudo‐lignin was formed at even moderate severities and that these insoluble degradation products can significantly retard cellulose hydrolysis. Furthermore, although low severity (CSF ~ 1.94) dilute acid pretreatment of a xylan–Avicel mixture hydrolyzed most of the xylan (98%) and produced negligible amounts of pseudo‐lignin, enzymatic conversion of cellulose dropped significantly (>25%) compared to cellulose pretreated alone at the same conditions. The drop in cellulose conversion was higher than realized for cellulase inhibition by xylooligomers reported previously. Plausible mechanisms are discussed to explain the observed reductions in cellulose conversions. Biotechnol. Bioeng. 2013; 110: 737–753. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
不同木质纤维素基质上白腐菌降解特性的研究   总被引:14,自引:0,他引:14  
通过测定木质素、纤维素、半纤维素和漆酶分泌的变化,研究白腐菌在稻草、木屑、粗纤维素、滤纸、黑液木素基质上的降解特性。结果表明,除黑液木素上白腐菌不能生长外,在前25d,各基质中纤维素、半纤维素和木质素含量呈持续下降趋势,之后,降解速率减少,其中木质素的降解速率大于纤维素和半纤维素的降解速率。漆酶分泌在生长初期呈快速上升趋势,第10d酶活达到最大,第10~20d快速下降,其后基本不变,基质中酶活大小顺序为稻草基质、木屑基质、粗纤维和滤纸基质,显示了木质素存在对漆酶分泌的诱导作用。  相似文献   

20.
Pinewood is an abundant source of lignocellulosic biomass that has potential to be used as renewable feedstock in biorefineries for conversion into advanced biofuels and other value-added chemicals. However, its structural recalcitrance, due to the compact packing of its major components, viz. cellulose, hemicellulose and lignin, high lignin content, and high cellulose crystallinity, is a major bottleneck in its widespread use as a biorefinery feedstock. Typical chemical, thermal, and biological pretreatment technologies are aimed at removing lignin and hemicellulose fractions for improving enzyme accessibility and digestibility of cellulose. This review highlights common pine pretreatment procedures, associated key parameters and resulting enzymatic hydrolysis yields. The challenges and limitations are also discussed as well as potential strategies to overcome them, providing an essential source of information to realize pine as a compelling biorefinery biomass source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号