首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
森林生物碳储量作为森林生态系统碳库的重要组成部分,在全球碳循环中发挥着重要作用。以小兴安岭7种典型林型为研究对象,通过外业样地调查与室内实验分析相结合的方法,从林分尺度对林分生物量与碳密度进行计量,分析了林分生物碳储量的空间分配格局,并对林分年固碳能力与碳汇潜力进行了探讨。结果表明:小兴安岭不同林型从幼龄林到成熟林的乔木层碳密度增长速率为:蒙古栎(Quercus mongolica)林>兴安落叶松(Larix gmelinii)林>云冷杉(Picea-Abies)林>樟子松(Pinus sylvestris var.mongolica)林>山杨(Populus davidiana)林>红松(Pinus koraiensis)林>白桦(Betula platyphylla)林。7种典型林型不同龄组(幼龄林、中龄林、近熟林和成熟林)林分生物量碳密度分别为:红松林31.4、74.7、118.4和130.2 t·hm–2;兴安落叶松林28.9、44.3、74.2和113.3 t·hm–2;樟子松林22.8、52.0、71.1和92.6 t·hm–2;云冷杉林23.1、44.1、77.6和130.3 t·hm–2;白桦林18.8、35.3、66.6和88.5 t·hm–2;蒙古栎林25.0、20.0、47.5和68.9 t·hm–2;山杨林19.8、28.7、43.7和76.6 t·hm–2。红松林、兴安落叶松林、樟子松林和蒙古栎林在幼龄林时林分年固碳量较高,其他林型在成熟林时林分年固碳量较高。7种典型林型不同龄组的林分生物量碳密度均随林龄增长而增加,但不同林型的碳汇功能存在差异,同一林型不同林龄的生物量碳密度增幅差异也较大。林分年固碳量在0.4–2.8 t·hm–2之间,碳汇能力较强、碳汇潜力较大。尤其是小兴安岭目前林分质量较差,幼龄林和中龄林所占的比重较大,具有较大的碳汇潜力。研究结果可为森林经营管理及碳汇功能评价提供参考。  相似文献   

2.
小兴安岭7种典型林型林分生物量碳密度与固碳能力   总被引:2,自引:0,他引:2       下载免费PDF全文
森林生物碳储量作为森林生态系统碳库的重要组成部分, 在全球碳循环中发挥着重要作用。以小兴安岭7种典型林型为研究对象, 通过外业样地调查与室内实验分析相结合的方法, 从林分尺度对林分生物量与碳密度进行计量, 分析了林分生物碳储量的空间分配格局, 并对林分年固碳能力与碳汇潜力进行了探讨。结果表明: 小兴安岭不同林型从幼龄林到成熟林的乔木层碳密度增长速率为: 蒙古栎(Quercus mongolica)林>兴安落叶松(Larix gmelinii)林>云冷杉(Picea-Abies)林>樟子松(Pinus sylvestris var. mongolica)林>山杨(Populus davidiana)林>红松(Pinus koraiensis)林>白桦(Betula platyphylla)林。7种典型林型不同龄组(幼龄林、中龄林、近熟林和成熟林)林分生物量碳密度分别为: 红松林31.4、74.7、118.4和130.2 t·hm-2; 兴安落叶松林28.9、44.3、74.2和113.3 t·hm-2; 樟子松林22.8、52.0、71.1和92.6 t·hm-2; 云冷杉林23.1、44.1、77.6和130.3 t·hm-2; 白桦林18.8、35.3、66.6和88.5 t·hm-2; 蒙古栎林25.0、20.0、47.5和68.9 t·hm-2; 山杨林19.8、28.7、43.7和76.6 t·hm-2。红松林、兴安落叶松林、樟子松林和蒙古栎林在幼龄林时林分年固碳量较高, 其他林型在成熟林时林分年固碳量较高。7种典型林型不同龄组的林分生物量碳密度均随林龄增长而增加, 但不同林型的碳汇功能存在差异, 同一林型不同林龄的生物量碳密度增幅差异也较大。林分年固碳量在0.4-2.8 t·hm-2之间, 碳汇能力较强、碳汇潜力较大。尤其是小兴安岭目前林分质量较差, 幼龄林和中龄林所占的比重较大, 具有较大的碳汇潜力。研究结果可为森林经营管理及碳汇功能评价提供参考。  相似文献   

3.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

4.
兴安落叶松天然林碳储量及其碳库分配特征   总被引:1,自引:0,他引:1  
兴安落叶松天然林作为大兴安岭林区的主要植被类型,在森林生态系统碳循环中具有重要的作用。在大兴安岭林区选择不同林龄的兴安落叶松天然林,调查其乔木、灌草、枯落物和土壤,并结合已建立的单木异速生长方程分别计算其碳储量,以期为明确该地区碳库动态及其碳库分配特征提供参考。结果表明,兴安落叶松天然林总碳储量随林龄的增加逐渐增大,由幼龄林到过熟林分别为140.46、186.63、208.64、308.62和341.03 Mg C/hm2,整体表现为碳汇,这主要与乔木碳储量随林龄的增加逐渐增大有关;乔木碳库的变化范围为45.44—212.67 Mg C/hm2,且其占总碳储量的比例也随林龄的增加逐渐增大,由幼龄林的32.60%到过熟林的62.36%;灌草碳储量占总碳储量的比例较小,仅为0.48%—0.93%;枯落物碳库在过熟林中较多,为26.11Mg C/hm2,这与过熟林较少的人为干扰有关;土壤碳储量以幼龄林最小,成熟林最高,分别为78.06和131.93 Mg C/hm2,但这与我国其他地区天然林相比均较低,这与该地区较浅的土壤发生层有关;土壤碳储量随林龄的变化并不明显,但其占总碳储量的比例却随林龄的增加逐渐减小,由幼龄林的56.01%减小到过熟林的29.35%。  相似文献   

5.
基于广西喀斯特地区45块1000 m2样地的调查,研究幼龄林、中龄林、近熟林、成熟林、过熟林5个林龄阶段喀斯特森林植被与土壤碳储量的分配格局.结果表明: 广西不同林龄喀斯特森林总碳储量表现为幼龄林(86.03 t·hm-2)<近熟林(110.63 t·hm-2)<中龄林(112.11 t·hm-2)<成熟林(149.1 t·hm-2)<过熟林(244.38 t·hm-2);各林龄阶段植被不同层碳储量分配均不同,乔木层所占比例占绝对优势,达到92.3%~98.7%,随林龄的增加而增长,灌木层、草本层、凋落物层所占比例分别为0.3%~1.9%、0.3%~1.2%和0.3%~2.5%,细根所占比例为0.3%~3.3%.土壤有机碳密度随土层深度的增加而递减,土壤层碳储量为51.75~81.21 t·hm-2,所占生态系统比例为33.2%~66.2%,其随林龄的增大呈减小趋势.生态系统地上、地下部分碳储量分别为22.80~141.72和62.30~102.66 t·hm-2,除过熟林外均为地下部分>地上部分,地上碳储量随林龄的增大呈逐渐增加的趋势,地下碳储量的变化规律与土壤碳储量变化趋势一致.土壤层和乔木层为生态系统的主要碳库,二者所占比例达到了96%以上.  相似文献   

6.
杨阳  冉飞  王根绪  朱万泽  杨燕  周鹏 《生态学杂志》2013,32(7):1674-1682
云南松林是西藏高原亮针叶林生态系统的重要组成部分,准确估算其生态系统碳储量不但有助于弄清西藏森林生态系统固碳现状,而且可为准确估算青藏高原乃至全国森林生态系统的固碳潜力和固碳速率提供基础数据.本研究以云南松为研究对象,采用实地调查与建模相结合的方法,建立了各器官(叶、枝、干、根)与株高、胸径的生物量回归方程,并以此为基础计算了云南松幼龄林、中龄林、近熟林和成熟林生态系统的生物量和碳储量.结果表明:(1)用胸径和树高估测单株林木器官生物量的较优模型为指数模型,所建立的生物量回归方程相关性较好(R2>0.90),估计精度较高.(2)在云南松幼龄林、中龄林、近熟林和成熟林生态系统中植被总生物量分别为(63.80±9.21)、(134.76+12.69)、(142.91±13.02)、(316.72+42.57)t·hm-2,其中乔木层生物量分别为(49.48±10.32)、(120.57±9.37)、(124.70±12.92)、(304.76±32.47)t·hm-2,灌草层生物量为(13.09±3.02)、(12.81±2.54)、(11.88±3.12)、(3.47±0.98)t·hm-2,凋落物生物量为(1.23±0.24)、(1.38±0.31)、(0.72±0.11)、(1.13±0.39)t·hm-2.(3)各龄级云南松林生态系统植被碳储量分别为(30.67±7.13)、(67.63±19.06)、(71.00±4.15)、(159.32±39.95)t·hm-2,碳储量随林龄增加的变化规律明显,碳汇潜力巨大.  相似文献   

7.
浙江省森林生态系统碳储量及其分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011-2012年野外标准地实测资料, 结合第八次全国森林资源清查资料, 研究了浙江省森林生态系统碳储量及其分布特征。结果表明: 浙江省森林生态系统碳储量为602.73 Tg, 其中乔木层、灌草层、凋落物层和土壤层碳储量分别为122.88 Tg、16.73 Tg、11.36 Tg和451.76 Tg, 分别占生态系统碳储量的20.39%、2.78%、1.88%和74.95%; 在各森林类型中, 阔叶混交林碳储量为138.03 Tg, 所占比例最大(22.90%); 在森林各龄组中, 幼、中龄林约占浙江省森林生态系统碳储量的70.66%, 是碳储量的主要贡献者。浙江省森林生态系统平均碳密度为120.80 t·hm-2, 乔木层、灌草层、凋落物层和土壤层碳密度分别为24.65 t·hm-2、3.36 t·hm-2、2.28 t·hm-2和90.51 t·hm-2。浙江省森林生态系统土壤层碳储量和生态系统碳储量呈极显著相关关系, 说明土壤层碳储量对浙江省森林生态系统碳储量贡献较大。浙江省天然林乔木层碳密度整体表现为过熟林>成熟林>近熟林>中龄林>幼龄林, 而人工林乔木层碳密度表现为过熟林>近熟林>成熟林>中龄林>幼龄林。浙江省幼、中龄林林分面积占比重较大, 占全省森林面积的76.76%, 若对现有森林进行更好的经营和管理, 可以增加浙江省森林的碳固存能力。  相似文献   

8.
人工林生态系统碳储量的空间分配格局对全球陆地碳循环有重要的影响,但湖南省杉木人工林生态系统碳储量的分配格局并不清楚。本研究在湖南省样地野外调查的基础上,结合第八次全国森林资源清查的结果,计算出湖南省杉木人工林生态系统的碳储量空间分布格局。结果表明:杉木人工林生态系统碳密度随着林龄增加而增加,幼龄林、中龄林和成熟林分别为125.70、138.57、193.72 Mg·hm~(-2);其中,幼龄林、中龄林和成熟林的植被生物量碳密度分别为18.72、38.86、62.48 Mg·hm~(-2);土壤碳密度随着林分发育先降低后增加,幼龄林为105.49 Mg·hm~(-2)、中龄林为97.23 Mg·hm~(-2)、成熟林126.7 Mg·hm~(-2);湖南省杉木人工林生态系统碳储量为307.48 Tg,其中幼龄林为90.57 Tg,中龄林为91.87 Tg,成熟林为125.31 Tg;湖南省杉木人工林生态系统的固碳潜力为85.56 Tg,其中,植被固碳潜力为47.19 Tg,土壤的固碳潜力为34.82 Tg。确定杉木人工林固碳潜力有助于量化人工林对碳汇的贡献及其制定实现潜力的森林经营管理措施。  相似文献   

9.
森林生态系统是最重要的陆地生态系统碳库,人工林生态系统碳储量在森林碳储量中所占比重越来越大。本研究选取天津平原地区不同林龄杨树人工林,通过野外调查和室内分析,估算了杨树人工林乔木、草本、凋落物和土壤碳储量。结果表明:人工杨树幼龄林、中龄林和成熟林的乔木生物量分别为43.65、56.18和121.59 t·hm-2,乔木各组分生物量所占比例在幼龄林和中龄林中表现为干根枝叶,在成熟林中表现为干枝根叶。3个林龄段杨树人工林的草本层生物量分别为4.60、2.92和1.58 t·hm-2,凋落物生物量分别为0.46、0.35和0.66 t·hm-2。人工杨树幼龄林、中龄林和成熟林生态系统碳储量分别为84.34、121.03和121.72 t C·hm-2,其中群落碳储量分别占25.85%、22.25%和46.58%,土壤碳储量分别占74.15%、77.75%和53.42%。群落碳储量中乔木碳储量分别为20.04、25.78和55.95 t C·hm-2;草本碳储量分别为1.63、1.05和0.57 t C·hm-2;凋落物碳储量分别为0.14、0.10和0.19 t C·hm-2。3个林龄段杨树人工林土壤有机碳储量(0~100 cm)依次为62.53、94.10和65.03 t C·hm-2,其中0~30 cm土壤有机碳储量所占比例分别为33.91%、37.64%和44.16%,随林龄的增加而增加。结果表明,杨树人工林生态系统碳储量随林龄的增加显著增加,而目前天津杨树人工林以幼龄林为主,未来天津杨树人工林存在巨大的碳储存空间。  相似文献   

10.
基于8~56 a长白落叶松人工林样地生物量调查数据,建立了长白落叶松林各器官生物量模型,探讨了不同林龄长白落叶松人工林干材、树皮、树枝、树叶、树根的生物量分布与变化规律及单木与林分乔木层的固碳能力。结果表明:随着林龄的增大,长白落叶松人工林林木及各器官生物量均呈现不同程度的增加趋势,单株木生物量由8 a时的0.174 kg增加至56 a时的328.196 kg,林分乔木层生物量由8 a时的0.519 t·hm-2增加至56 a时的251.39 t·hm-2,其中树干所占比例最大,且增幅最大。长白落叶松人工林单木平均碳储量为74.822 kg,56 a林分乔木层碳密度为130.455 t·hm-2,平均碳密度达63.113 t·hm-2,各器官碳储量变化规律明显。长白落叶松人工林幼龄林、中龄林、近熟林、成熟林林分乔木层的年平均固碳量分别为0.087、1.193、1.703、2.124 t·hm-2,固碳量年平均增长率排序为中龄林幼龄林成熟林近熟林。研究认为,长白落叶松人工林单株木及林分各器官生物量随林龄增加具有明显的变化规律,成熟林分固碳水平最高,中龄林分后期固碳潜力最大。  相似文献   

11.
我国东北天然林保护工程区森林植被的碳储量   总被引:1,自引:0,他引:1  
以东北天然林保护工程区森林生态系统为对象,通过对其主要森林类型进行调查,探讨天保工程经营区划对森林植被固碳现状的影响,并结合已有的东北林区生物量与蓄积量数据库,建立了东北林区主要树种组的生物量-蓄积量回归模型,然后以第7次森林资源清查为基础,对东北天保工程区森林植被碳储量进行估算,以期为全国森林生物量的估算和天保工程的评估提供参考。结果表明,不同经营区之间(重点公益林、一般公益林和商品林)森林植被碳密度的差异并不显著,这可能与天然林保护工程实施初期经营区划的标准、样地的选择以及天保工程实施过程中粗放的管理方式有关。东北天保工程区森林植被碳储量为1045 Tg C,占东北、内蒙古三省森林植被总碳储量的68%;工程区以天然林为主,占工程区总植被碳储量的97%。工程区森林植被平均碳密度为41 Mg/hm2,较东北、内蒙古三省平均植被碳密度高14%;工程区植被碳密度随林龄的增加逐渐增大,由幼龄林的13 Mg/hm2到过熟林的63 Mg/hm2。因此,继续加强天然林保护工程的实施,提高其林分质量,这对未来我国森林碳汇潜力的增加和森林的可持续发展都具有重要的意义。  相似文献   

12.
2004-2013年山东省森林碳储量及其碳汇经济价值   总被引:3,自引:0,他引:3  
森林作为陆地生态系统的主体,其林分碳储量及其碳汇经济价值的估算是全球碳循环研究的热点和重要内容。基于2004-2008年和2009-2013年山东省森林资源清查数据以及实测样地数据改进的生物量蓄积量转换参数,利用生物量转换因子连续函数法,估算2004-2013年山东省森林碳储量及其碳汇经济价值动态。研究结果表明,2004-2013年山东省森林面积、碳储量和碳密度分别从2004-2008年的156.12×104hm2、34.75Tg C和22.26Mg C/hm2增加到2009-2013年161.44×104hm2、43.98Tg C和27.24Mg C/hm2。人工林是森林面积、碳储量和碳密度增加的主要贡献者,人工林和天然林对森林生物量碳汇的贡献分别为97.3%和2.7%。两次森林清查期间,杨树和硬阔软阔类森林的碳储量之和分别占全省总量的70.2%和69.6%,杨树的碳储量和碳密度增加最为显著。各龄组森林碳储量由大到小依次为:幼龄林 > 中龄林 > 成熟林 > 近熟林 > 过熟林。森林碳汇经济价值从2004-2008年的243.37亿元增长到2009-2013年的253.42亿元,年均增长2.01亿元,杨树的碳汇经济价值占全省所有森林类型的60%,赤松单位面积碳汇经济价值最强为2.08万元/ha。  相似文献   

13.
大兴安岭北部天然针叶林土壤氮矿化特征   总被引:10,自引:5,他引:5  
肖瑞晗  满秀玲  丁令智 《生态学报》2019,39(8):2762-2771
采用顶盖埋管法对大兴安岭地区天然针叶林(樟子松林、樟子松-兴安落叶松混交林和兴安落叶松林)土壤铵态氮(NH~+_4-N)、硝态氮(NO~-_3-N)、净氮矿化速率进行研究,并探索土壤理化性质与氮矿化之间的相关性,为大兴安岭地区森林生态系统土壤养分管理及森林经营提供帮助。结果表明:观测期内(5—10月)3种林型土壤无机氮变化范围为31.51—70.42 mg/kg,以NH~+_4-N形式存在为主,占比达90%以上,且与纯林相比混交林土壤无机氮含量较高。3种林型土壤净氮矿化、净氨化、净硝化速率月变化趋势呈V型,7、8月表现为负值,其他月份为正值。净氮矿化速率变化范围樟子松林为-0.54—1.28 mg kg~(-1) d~(-1)、樟子松-兴安落叶松混交林为-0.13—0.55 mg kg~(-1) d~(-1)、兴安落叶松林为-0.80—1.05 mg kg~(-1) d~(-1)。土壤净氨化过程在土壤氮矿化中占主要地位,占比达60%以上。3种林型土壤净氮矿化、净氨化及净硝化速率垂直差异显著,0—10 cm土层矿化作用明显高于10—20 cm土层(P0.05)。土壤氮矿化速率与土壤含水量、土壤有机碳含量、土壤C/N、枯落物全氮含量和枯落物C/N均存在显著相关性。不同类型的森林土壤及枯落物的质量也存在差异,进而影响土壤氮矿化特征。  相似文献   

14.
刘领  王艳芳  悦飞雪  李冬  赵威 《生态学报》2019,39(3):864-873
利用1994—1998年、1999—2003年、2004—2008年、2009—2013年河南省4期森林资源清查数据,运用生物量转换因子连续函数法和平均生物量法,估算了1998—2013年河南省森林植被的碳储量和碳密度变化。研究结果表明,河南省森林植被碳储量由1998年的45.57 Tg增加到2013年的107.98 Tg,年均碳汇量为4.16 Tg/a。乔木林碳储量和碳密度分别由1998年的33.54 Tg和22.39 Mg/hm~2增加到2013年的97.11 Tg和31.80 Mg/hm~2。乔木林碳储量在所有植被类型中占主体,4个森林清查时期乔木林碳储量占森林植被总碳储量的比例分别为73.60%、79.22%、85.63%和89.93%。2013年森林清查时,乔木林中杨树和栎类碳储量最大,分别占总碳储量的37.61%和25.22%,各龄组乔木林碳密度大小顺序依次为成熟林近熟林中龄林过熟林幼龄林。阔叶林面积、碳储量、碳密度均高于针叶林,阔叶林是河南省森林碳汇的主要贡献者。人工林面积、碳储量、碳密度增加幅度都要高于天然林,人工林碳储量由1998年的9.62 Tg增加到2013年的55.67 Tg,占乔木林碳储量总增量的77.15%,人工林碳密度由1998年的17.86 Mg/hm~2提高到2013年的32.01 Mg/hm~2,人工林在河南省森林碳汇中逐步发挥重要的作用,逐渐成为河南省森林碳汇的主体,随着人工林生长为具有较高碳密度的成熟林,河南省乔木林将具有较大的碳汇潜力。  相似文献   

15.
余蓉  项文化  宁晨  罗赵慧 《生态学报》2016,36(12):3499-3509
采用标准地调查和生物量实测方法,研究了长沙市区4种人工林生态系统生物量、碳储量及其分布特征。结果表明:马尾松林、杉木林、毛竹林和杨树林生态系统生物量分别为135.390、100.578、64.497、63.381 t/hm~2;林下植被及死地被物层分别为18.374、22.321、1.847 t/hm~2和2.602 t/hm~2。乔木层林木各器官含碳率为0.405—0.551 g C/g,林下植被层为0.421—0.518 g C/g,死地被物层为0.230—0.545 g C/g,土壤层有机碳含量为15.669—19.163 g C/kg。4种人工林生态系统总碳储量为208.671、176.723、149.168 t/hm~2和164.735 t/hm~2,其中植被层为32.789—67.8661 t/hm~2;死地被物层为0.394—6.163 t/hm~2;土壤层为134.642、116.911、115.985 t/hm~2和126.860 t/hm~2。4种森林年净固碳量为15.167 t hm-2a-1,固定CO_2量55.602 t hm-2a-1。研究结果可为深入研究城市森林碳平衡提供基础数据。  相似文献   

16.
六盘山森林植被碳密度空间分布特征及其成因   总被引:2,自引:0,他引:2  
深入了解干旱缺水地区森林植被碳密度的空间分布特征是定量评价森林固碳能力、合理协调林水矛盾的重要基础。然而,目前有关干旱缺水地区的植被碳密度的研究仅限于典型样地上的碳储量、碳密度的比较,对区域尺度上森林植被碳密度的空间分布特征了解较少。为此,利用宁夏六盘山自然保护区2005年森林资源一类清查数据,计算了森林植被碳密度,并分析了其与林分结构特征和环境因子的关系。结果表明,六盘山的森林植被碳密度(t/hm2)平均为26.17(0.67—120.63),其中天然次生林为30.2(7.6—120.6),显著高于人工林的15.7(0.67—66.7)。森林植被碳密度随林龄增加而线性增大,天然林和人工林的平均增速分别为1.11和2.48 t hm-2a-1,而且,部分未成熟林的林分植被碳密度已接近甚至超过全国同类森林类型成熟林的植被碳密度平均值。随林分密度增加,森林植被碳密度增大,但在林分密度1000株/hm2后,森林植被碳密度不再增大,达到其最大值,其中,天然林为75.4 t/hm2,人工林为34.6 t/hm2;林冠郁闭度对森林植被碳密度的影响与林分密度相似,森林植被碳密度增长的郁闭度拐点为0.5。水分条件是影响六盘山森林植被碳密度的重要因素,森林植被碳密度(t/hm2)由700 mm以上地点的32.5(7.6—120.6)下降至年降水量500—600 mm地点的10.9(0.67—42.9),而且随年降水量减少,最大森林植被碳密度所对应的海拔高度呈增加趋势,如在年降水量为700、600—700和600 mm的地区,最大碳密度所在海拔高度分别为1900—2100、2100—2300和2300—2500 m。综上所述,研究区森林植被还有较大的固碳潜力,从提高森林固碳功能角度来看,林分郁闭度不宜超过0.5。  相似文献   

17.
广西马山岩溶次生林群落生物量和碳储量   总被引:1,自引:0,他引:1  
岩溶植被在岩溶生态系统碳循环和全球碳平衡中具有重要的作用。通过对马山县岩溶次生林年龄序列(幼龄林、中龄林和老龄林)3个演替阶段9个样地(20 m×50 m)的系统取样调查,研究了停止人为干扰后岩溶次生林生物量和碳储量的变化。结果表明:沿幼林、中林和老林群落的顺向演替发展,群落生物量显著增加(P0.05),从幼林群落的48.17 t/hm2、到中林群落113.47 t/hm2,再到老林群落242.59 t/hm2。老林生态系统的碳储量较高,平均为236.69 t/hm2,中林和幼林较低且非常相近,分别为225.17 t/hm2和224.76 t/hm2,各次生林生态系统的碳储量差异不显著(P0.05)。土壤碳储量的大小顺序为幼林(198.44 t/hm2)中林(167.39 t/hm2)老林(113.43 t/hm2)。沿群落正向演替,各次生林生态系统中植物碳储量和土壤碳储量的比例发生明显的变化。幼林的土壤碳储量占生态系统碳储量的88.29%,植物碳储量只占11.71%;中林相应为74.34%和25.66%;而老林为47.92%和52.08%。可见,随着岩溶植被的正向演替,土壤碳转变为植物碳的趋势十分明显,这是岩溶森林不同于酸性土森林的一个显著特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号