首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The full-length cDNAs of two Karelinia caspica genes, KcNHX1 and KcNHX2, were isolated by RACE and RT-PCR based on the conserved regions of Na+/H+ antiporter (NHX) genes from other halophyte species. The cloned KcNHX1 cDNA contained 2,022 nucleotides with an open reading frame (ORF) of 1,620 bp and the KcNHX2 cDNA contained 1,976 nucleotides with an ORF of 1,653 bp. The deduced amino acid sequences indicated that both genes were homologous to NHXs from other higher plants. To investigate the possible roles of KcNHX1 and KcNHX2 in the salt stress response of K. caspica and the underlying regulatory mechanisms, RNAi vectors were constructed and transformed into K. caspica to specifically silence endogenous KcNHX1 and KcNHX2. The physiological results showed that silencing KcNHX1 in K. caspica led to reduced salt tolerance in high concentrations of NaCl, suggesting that KcNHX1 plays an essential role in the response of K. caspica to salt stress. However, the inhibition of KcNHX2 seemed to have little influence on the salt resistance of transgenic plants, indicating that KcNHX2 may be relevant for functions other than salt tolerance in K. caspica.  相似文献   

2.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

3.
4.
Three types of transgenic tobacco plants were acquired by separate transformation or co-transformation of a vacuolar Na+/H+ antiporter gene, SeNHX1, and a betaine synthesis gene, BADH. When exposed to 200 mM NaCl, the dual gene-transformed plants displayed greater accumulation of betaine and Na+ than their wild-type counterparts. Photosynthetic rate and photosystem II activity in the transgenic plants were less affected by salt stress than wild-type plants. Transgenic plants exhibited a greater increase in osmotic pressure than wild-type plants when exposed to NaCl. More importantly, the dual gene transformed plants accumulated higher biomass than either of the single transgenic plants under salt stress. Taken together, these findings indicate that simultaneous transformation of BADH and SeNHX1 genes into tobacco plants can enable plants to accumulate betaine and Na+, thus conferring them more tolerance to salinity than either of the single gene transformed plants or wild-type tobacco plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Plant vacuolar Na+/H+ antiporter plays an important role in salt tolerance. A vacuolar Na+/H+ antiporter gene TrNHX1 was cloned from Trifolium repens L., a forage legume, by RT-PCR and RACE methods using degenerate oligonucleotide primers. The TrNHX1 sequence contains 2,394 nucleotides and an open-reading frame of 1,626 nucleotides that encodes a protein of 541 amino acids with a deduced molecular mass of 59.5 kDa. The deduced amino acid sequence of TrNHX1 is 78% identical to that of a vacuolar Na+/H+ antiporter of Arabidopsis thaliana, AtNHX1, and contains the consensus amiloride-binding domain. TrNHX1 could partially complement the NaCl-sensitive phenotypes of yeast mutants Δnhx1 and Δena1-4Δnhx1, and a similar complementation was also observed in the presence of LiCl and KCl. In addition, it was found that TrNHX1 suppressed the hygromycin-sensitive phenotype of yeast mutant Δena1-4Δnhx1. The expression of TrNHX1 in T. repens increased in the presence of 150 mM NaCl, and this result accords with that of Na+ contents determination under the same treatment. These results suggest that TrNHX1 functions as a vacuolar Na+/H+ antiporter and plays an important role in salt tolerance and ion homeostasis in T. repens.  相似文献   

7.
Soil salinity is a major factor limiting apple production in some areas. Tonoplast Na+/H+ antiporters play a critical role in salt tolerance. Here, we isolated MdNHX1, a vacuolar Na+/H+ antiporter from Luo-2, a salt-tolerant rootstock of apple (Malus × domestica Borkh.), and introduced it into apple rootstock M.26 by Agrobacterium-mediated transformation. PCR and DNA gel blot analyses confirmed successful integration of MdNHX1. RT-PCR analysis indicated that the gene was highly expressed in transgenic plants, but the degree of this expression varied among lines. Its overexpression conferred high tolerance to salt stress. Analysis of ion contents showed that, when exposed to salinity stress, the transgenics compartmentalized more Na+ in the roots and also maintained a relatively high K+/Na+ ratio in the leaves compared with non-transformed plants. Under normal conditions, however, amounts of potassium and sodium did not differ significantly between transgenic and control plants.  相似文献   

8.
9.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

10.
11.
12.
Zhao J  Barkla BJ  Marshall J  Pittman JK  Hirschi KD 《Planta》2008,227(3):659-669
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.  相似文献   

13.
14.
High salinity is the one of important factors limiting plant growth and crop production. Many NHX-type antiporters have been reported to catalyze K+/H+ exchange to mediate salt stress. This study shows that an NHX gene from Arachis hypogaea L. has an important role in K+ uptake and transport, which affects K+ accumulation and plant salt tolerance. When overexpressing AhNHX1, the growth of tobacco seedlings is improved with longer roots and a higher fresh weight than the wild type (WT) under NaCl treatment. Meanwhile, when exposed to NaCl stress, the transgenic seedlings had higher K+/H+ antiporter activity and their roots got more K+ uptake. NaCl stress could induce higher K+ accumulation in the roots, stems, and leaves of transgenic tobacco seedlings but not Na+ accumulation, thus, leading to a higher K+/Na+ ratio in the transgenic seedlings. Additionally, the AKT1, HAK1, SKOR, and KEA genes, which are involved in K+ uptake or transport, were induced by NaCl stress and kept higher expression levels in transgenic seedlings than in WT seedlings. The H+-ATPase and H+-PPase activities were also higher in transgenic seedlings than in the WT seedlings under NaCl stress. Simultaneously, overexpression of AhNHX1 increased the relative distribution of K+ in the aerial parts of the seedlings under NaCl stress. These results showed that AhNHX1 catalyzed the K+/H+ antiporter and enhanced tobacco tolerance to salt stress by increasing K+ uptake and transport.  相似文献   

15.
Salinity and drought are main threat to agriculture productivity, to avoid further losses it is necessary to improve the genetic material of crops against these stresses In this present study, AtNHX1, a vacuolar type Na+/H+ antiporter gene driven by 35S promoter was introduced into groundnut using Agrobacterium tumefaciens transformation system. The stable integration of the AtNHX1 gene was confirmed by polymerase chain reaction (PCR) and southern blot analysis. It was found that transgenic plants having AtNHX1 gene are more resistant to high concentration of salt and water deprivation than the wild type plants. Salt and proline level in the leaves of the transgenic plants were also much higher than that of wild type plants. The results showed that overexpression of AtNHX1 gene not only improved salt tolerance but also drought tolerance in transgenic groundnut. Our results suggest that these plants could be cultivated in salt and drought-affected soils.  相似文献   

16.
The tonoplast and plasma membrane localized sodium (potassium)/proton antiporters have been shown to play an important role in plant resistance to salt stress. In this study, AtNHX1 and AtNHX3, two tonoplast Na+(K+)/H+ antiporter encoding genes from Arabidopsis thaliana, were expressed in poplar to investigate their biological functions in the resistance to abiotic stresses in woody plants. Transgenic poplar plants expressing either gene exhibited increased resistance to both salt and water-deficit stresses. Compared to the wild type (WT) plants, transgenic plants accumulated more sodium and potassium ions in the presence of 100 mM NaCl and showed reduced electrolyte leakage in the leaves under water stress. Furthermore, the proton-translocating and cation-dependent H+ (Na+/H+ or K+/H+) exchange activities in the tonoplast vesicles isolated from the leaves of transgenic plants were higher than in those isolated from WT plants. Therefore, constitutive expression of either AtNHX1 or AtNHX3 genetically modified the salt and water stress tolerance of transgenic poplar plants, providing a potential tool for engineering tree species with enhanced resistance to multiple abitotic stresses.  相似文献   

17.
18.
19.
While the role of the vacuolar NHX Na+/H+ exchangers in plant salt tolerance has been demonstrated on numerous occasions, their control over cytosolic ionic relations has never been functionally analysed in the context of subcellular Na+ and K+ homeostasis. In this work, PutNHX1 and SeNHX1 were cloned from halophytes Puccinellia tenuiflora and Salicornia europaea and transiently expressed in Arabidopsis wild type Col-0 and the nhx1 mutant. Phylogentic analysis, topological prediction, analysis of evolutionary conservation, the topology structure and analysis of hydrophobic or polar regions of PutNHX1 and SeNHX1 indicated that they are unique tonoplast Na+/H+ antiporters with characteristics for salt tolerance. As a part of the functional assessment, cytosolic and vacuolar Na+ and K+ in different root tissues and ion fluxes from root mature zone of Col-0, nhx1 and their transgenic lines were measured. Transgenic lines sequestered large quantity of Na+ into root cell vacuoles and also promoted high cytosolic and vacuolar K+ accumulation. Expression of PutNHX1 and SeNHX1 led to significant transient root Na+ uptake in the four transgenic lines upon recovery from salt treatment. In contrast, the nhx1 mutant maintained a prolonged Na+ efflux and the nhx1:PutNHX1 and nhx1:SeNHX1 lines started to actively pump Na+ out of the cell. Overall, our findings suggest that PutNHX1 and SeNHX1 improve Na+ sequestration in the vacuole and K+ retention in the cytosol and vacuole of root cells of Arabidopsis, and that they interact with other regulatory mechanisms to provide a highly orchestrated regulation of ionic relations among intracellular cell compartments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号