首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
2.
对狗牙根(Cynodon dactylon‘C299’)花序发育过程中的形态学变化进行了观察。结果表明,‘C299’花序的整个发育过程可分为8个阶段,即营养生长期、穗轴发生期、苞叶原基分化期、小穗原基分化期、小穗分化期、小花分化期、颖片和内外稃发育期及花药和柱头形成期。其中,穗轴发生期(直立茎上有6~9片叶)是抑制花序形成和决定种子产量的关键时期。  相似文献   

3.
Inflorescence organogenesis of a wild-type and a gynomonoecious (pistillate) mutant in Tripsacum dactyloides was studied using scanning electron microscopy. SEM (scanning electron microscope) analysis indicated that wild-type T. dactyloides (Eastern gamagrass) expressed a pattern of inflorescence organogenesis that is observed in other members of the subtribe Tripsacinae (Zea: maize and teosinte), family Poaceae. Branch primordia are initiated acropetally along the rachis of wild-type inflorescences in a distichous arrangement. Branch primordia at the base of some inflorescences develop into long branches, which themselves produce an acropetal series of distichous spikelet pair primordia. All other branch primordia function as spikelet pair primordia and bifurcate into pedicellate and sessile spikelet primordia. In all wild-type inflorescences development of the pedicellate spikelets is arrested in the proximal portion of the rachis, and these spikelets abort, leaving two rows of solitary sessile spikelets. Organogenesis of spikelets and florets in wild-type inflorescences is similar to that previously described in maize and the teosintes. Our analysis of gsf1 mutant inflorescences reveals a pattern of development similar to that of the wild type, but differs from the wild type in retaining (1) the pistillate condition in paired spikelets along the distal portion of the rachis and (2) the lower floret in sessile spikelets in the proximal region of the rachis. The gsf1 mutation blocks gynoecial tissue abortion in both the paired-spikelet and the unpaired-spikelet zone. This study supports the hypothesis that both femaleness and maleness in Zea and Tripsacum inflorescences are derived from a common developmental pathway. The pattern of inflorescence development is not inconsistent with the view that the maize ear was derived from a Tripsacum genomic background.  相似文献   

4.
The ontogeny of tassels and ears in a perennial Mexican teosinte, Zea perennis (Hitchc.) Reeves and Mangelsdorf, was examined using scanning electron microscopy and light microscopy. Ear development follows a pattern previously described for two annual teosintes, Z. mays subsp. mexicana and Z. mays subsp. parviglumis var. parviglumis (race Balsas), and for the bisexual mixed inflorescence in a diploperennial teosinte, Z. diploperennis; it differs from that described for the ear of Z. diploperennis plants grown at the latitudes of Iowa and Wisconsin. Common bud primordia of the ear are initiated in the axil of distichously arranged bracts along the ear axis. These common primordia bifurcate to form paired pedicellate and sessile spikelet primordia. Development of the pedicellate spikelets in the ear is arrested leaving the sessile spikelets, along with the adjoining rachis segment, to form solitary grains enclosed within cupulate fruitcases. The organogenesis of the central spike of the tassel is similar to that previously described in other Zea taxa. This developmental study supports the hypothesis that both femaleness and maleness are derived from and expressed on a common background; it is consistent with the view that the maize ear was derived from the central spike of a male inflorescence terminating a primary branch of the main axis of the inflorescence.  相似文献   

5.
CAMARA-HERNANDEZ J. & GAMBINO, S., 1991. Early ontogenetic development of the pistillate inflorescence in a diploid perennial teosinte (Zea diploperennis , Poaceae). The early ontogeny of pistillate inflorescences of %ea diploperennis in plants grown at the latitude of Buenos Aires, Argentina, is investigated using the scanning electron microscope. The pattern of development of the inflorescence is similar to that in staminate and mixed inflorescences, starting with the formation of a pair of spikelets from a common branch primordium initiated in the axil of a bract on the ear axis. This bract arrests its development and aborts early. After initiation of an outer glume on both spikelet primordia, the pedicellate spikelet arrests its growth and aborts resulting in the mature inflorescence having two rows of solitary spikelets arranged distichally. This is significantly different from the pattern observed by other authors in plants grown in different environments (such as in natural populations in Mexico).  相似文献   

6.
The ontogeny of tassels and ears in two annual Mexican teosintes, Zea mays subsp. mexicana and Z. mays subsp. parviglumis, was examined using scanning electron microscopy and light microscopy. Ear development in these annual teosintes follows a pattern previously described as leading to the bisexual mixed inflorescence in Z. diploperennis. Common bud primordia are initiated in the axils of distichously arranged bracts along the ear axis. These common primordia bifurcate to form paired sessile and pedicellate spikelet primordia. Development of pedicellate spikelets is arrested leaving the sessile spikelets, along with the adjoining rachis segment, to form solitary grains enclosed within cupulate fruitcases. Development of the central tassel spike is similar to that previously described in the Z. diploperennis tassel, except that the first formed axillary bud primordia form precocious tassel branches. The origin of these tassel branches suggests a possible mechanism for the transition from a distichous spike, characteristic of teosinte, to a polystichous spike, typical of maize.  相似文献   

7.
Tassel and ear primordia were collected from greenhouse-grown specimens of the Mexican maize landrace Chapalote and prepared for scanning electron microscopic (SEM) examination. Measurements of inflorescence apices and spikelet pair primordia (spp) were made from SEM micrographs. Correlation of inflorescence apex diameter with number of spikelet ranks showed no significant difference between tassels and ears, except at the two-rank level where the ear apical meristem had a significantly smaller diameter than corresponding two-ranked tassels. Within individual inflorescences, spp in different ranks enlarged at comparable rates, although the rates from one ear to the next along the stem differed. In both tassels and ears, spp divide to form paired sessile and pedicellate spikelet primordia when the spp is 150 μm wide; ear axes are significantly thicker than tassel axes at the time of bifurcation. The similarities in growth between ear and tassel primordia lend further support to the hypothesis that both the maize tassel and ear are derived from a common inflorescence pattern, a pattern shared with teosinte. Inflorescence primordial growth also suggests that a key character difference between teosinte and maize, distichous vs. polystichous arrangement of spikelets, may be related to size of the apical dome and/or rate of primordium production by the apical meristem. There appears to be more than a single morphological event in the shift from vegetative to reproductive growth. The evocation of axillary buds (ears) is independent of, and temporally separated from, the transition to flowering at the primary shoot apex (tassel).  相似文献   

8.
本文对糖密草(MelinisminutifloraBeauv.)的幼穗分化发育及花和果实的形态作了研究,将幼穗分化发育过程划分为以下九个时期:第一苞原基形成期;第一次枝梗原基形成期;第二、三次枝梗原基形成期;小穗及颖花原基形成期;雌、雄蕊原基形成期;花粉母细胞形成期;花粉母细胞减数分裂期;花粉充实期;花粉成熟期。全过程历时约需42d.从抽穗到颖果成熟约需50d。糖蜜草的花序为圆锥花序。每花序有可育花2000—3000朵.小穗是由小穗轴、内外颖片、不育花外稃和小花构成。小花包括有内外稃各一片、一鳞被、雄蕊三枚和一枚雌蕊,颖果千粒重为91mg。  相似文献   

9.
Suppressor of sessile spikeletsl (Sos1) is a dominant mutant of maize that blocks branching of the spikelet-pair primordium to form the sessile spikelet during ear development. As a result, Sos1 mutant ears and tassels possess single spikelets as opposed to the normal condition of paired spikelets, one sessile and the other pedicellate. Sos1 also causes a reduction in the number of tassel branches and the number of orthostichies (or cupule ranks) in the ear. The sos1 genetic locus maps to the short arm of maize chromosome 4. The Sos1 single spikelet phenotype appears similar to the single spikelet phenotype found in teosinte, the probable progenitor of maize. This similarity invites the hypothesis that sos1 had a role in the evolution of maize from teosinte. However, genetic mapping data and a comparison of the developmental basis of the single spikelet condition in the Sos1 mutant and teosinte demonstrate that their similar phenotypes result from distinct genetic-developmental mechanisms. These results indicate that sos1 was not involved in the evolution of maize and caution against drawing conclusions of homology based solely on similar adult phenotypes.  相似文献   

10.
The morphology, ontogeny, and vascular anatomy of the staminate inflorescences and florets of seven species of Allocasuarina are described. The generally terminal but open-ended inflorescences occur on monoecious or staminate dioecious trees and consist of whorls of bracts, each subtending a sessile axillary floret. Each floret consists of one terminal stamen with a bilobed, tetrasporangiate anther enclosed typically by cuculliform appendages, commonly considered bracteoles, an inner median pair and an outer lateral pair. The mature stamen is exerted, the anther is basifixed and is extrorsely dehiscent. In early development of a male inflorescence very little internodal elongation occurs and enclosing cataphylls appear. The inflorescence apex is a low dome with a uniseriate tunica and a small group of central corpus cells. Bract primordia are initiated by periclinal divisions of C1 followed by further divisions of the corpus and anticlinal divisions in the tunica. The bracts are epinastic and become gamophyllous except apically by cell divisions in both sides of each primordium. Stomata are restricted to the axis furrows and the abaxial tips of the bracts. The axillary florets arise in acropetal succession initiated by periclinal divisions in C1 accompanied by anticlinal divisions in the tunica. The lateral floral appendages are also initiated by C1 followed by anticlinal divisions in the tunica. They become adnate basally later with the subtending bract. The median sterile appendages are initiated in a manner similar to the initiation of the outer appendages. The stamen is initiated by divisions in the outer layers of the corpus and in the tunica, and then develops first by apical growth followed by intercalary growth. The vascular system of the inflorescence is identical to that of the vegetative stem. Each floret is supplied by a single bundle that has its source in a branch from each of the two traces supplying a bract. Six bundles arise from the floral bundle; four of these terminate in the base of the stamen and two form an amphicribal bundle that supplies the anther. Pollen is binucleate, 3- to 7-porate. The exine is tegillate.  相似文献   

11.
Inflorescence development in a newly discovered teosinte, Zea nicaraguensis (Poaceae), from Nicaragua has been investigated using scanning electron microscopy (SEM). The SEM examination revealed that the pattern of both male and female inflorescence development was similar to previously described inflorescence in other Zea taxa. Branch primordia were initiated acropetally in a distichous pattern along the rachis of male and female inflorescences. Spikelet pair primordia bifurcated into pedicellate and sessile spikelet primordia. Predictably, pedicellate spikelet development was arrested and aborted in the female teosinte inflorescence. Organogenesis of functional spikelets and florets was similar to that previously described in maize and teosintes. The results were consistent with our hypothesis that both femininity and masculinity share a common mechanism of inflorescence development in Zea and Tripsacum and are in accord with a putative common mechanism of sex determination in the Andropogoneae. Interestingly, this population of teosinte, unique in its ability to grow in water-logged soils, showed a stable pattern of early inflorescence development. Our results also revealed the uncharacteristic presence of inflorescence polystichy in this population of Zea nicaraguensis. We propose this novel phenotypic variation raises the possibility that a domestic evolution of polystichy in maize was enabled by an occasional polystichous phenotypic in teosinte.  相似文献   

12.
通过野外观察和石蜡切片技术研究了毛竹(Phyllostachys edulis)的花序发育进程。研究结果表明:毛竹的花序为续次发生的假花序,以小穗为单元,4~13个不等,偏向一侧排列(似扫帚状)的小穗组成长约8.01 cm的复穗状花序;当花序伸长至4~5 cm时,形成侧芽结构,小穗原基开始发育,形成各级小穗,直至顶生小穗、侧生小穗出现;当花序伸长至8~10 cm时,颖花原基形成并开始发育,最终形成3个雄蕊和1个雌蕊构成的小花。花序形成初期(5月中旬至6月),苞片紧裹主轴,顶端具缩小叶;随着分蘖小穗的生长和小花开放,植株叶片变黄,整个花序变为褐色,进入种实发育成熟阶段。本文首次报道了毛竹花序的发育进程,进一步丰富了竹类生殖生物学的研究内容,为竹亚科及禾本科的生殖生物学研究积累了丰富的材料。  相似文献   

13.
Maize is a monoecious species that produces imperfect (unisexual), highly derived flowers called florets. Within the spikelet, the basic repeating unit of the maize inflorescence, the spikelet meristem gives rise to an upper and a lower floret. Although initially bisexual, floret unisexuality is established through selective organ elimination. In addition, the lower floret of each ear spikelet is aborted early in its development, leaving the upper floret to mature as the only pistillate floret. Expression from the cytokinin-synthesizing isopentenyl transferase (IPT) enzyme under the control of the Arabidopsis senescence-inducible promoter SAG (senescence associated gene)12 was observed during early maize floret development. Moreover, the lower floret was rescued from abortion, resulting in two functional florets per spikelet. The pistil in each floret was fertile, but the spikelet produced just one kernel composed of a fused endosperm with two viable embryos. The two embryos were genetically distinct, indicating that they had arisen from independent fertilization events. These results suggest that cytokinin can determine pistil cell fate during maize floret development.  相似文献   

14.
在扫描电镜下观察了桦木科(Betulaceae)铁木属花序和花的形态发生过程。结果显示, 铁木雌花序由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化形成1对次级苞片和2个花原基, 每个花原基分化出2个或3个心皮原基, 形成二心皮或三心皮雌蕊, 雌蕊基部有1层环状花被原基。雄花序为柔荑状, 由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化出3个花原基分区, 位于中央的花原基分区, 分化形成5-6枚雄蕊原基, 两侧的花原基分区, 分别分化形成3-4枚雄蕊原基, 雄蕊原基分化形成四药囊雄蕊。雄蕊原基纵裂, 但花丝纵裂没有达到基部。  相似文献   

15.
The initiation and growth of axillary meristems are fundamental components of plant architecture. Here, we describe the mutant missing flowers (mf) of Helianthus annuus characterized by the lack of axillary shoots. Decapitation experiments and histological analysis indicate that this phenotype is the result of a defect in axillary meristem initiation. In addition to shoot branching, mutation affects floral differentiation. The indeterminate inflorescence of sunflower (capitulum) is formed of a large flat meristem which produces floret primordia in multiple spirals. In wildtype plants a bisecting crease divides each primordium in two distinct bumps that adopt different fate. The peripheral (abaxial) part of the primordium becomes a small leaf-like bract and the adaxial part becomes a flower. In the mf mutant, the formation of flowers at the axil of bracts is precluded. Histological analyses show that in floret primordia of the mutant a clear subdivision in dyads is not established. The primordia progressively bend inside and only large involucral floral bracts are developed. The results suggest that the MISSING FLOWERS gene is essential to provide or perceive an appropriate signal to the initiation of axillary meristems during both vegetative and reproductive phases.  相似文献   

16.
Some have postulated that highland Mexican maize was derived from an ancient high-altitude teosinte and that later introgression between the two taxa occurred. We used scanning electron microscopy to examine the inflorescence development in both the tassel and ear of a high-altitude Toluca teosinte. One of the most interesting observations was the presence of atypical multiranked orthostiches in the central spike of some male Toluca teosinte inflorescences. Most tassels exhibited a central spike with a pure, four-ranked, tetrastichous phyllotaxy or an intermediate (distichous/tetrastichous) phyllotaxy. A few A(1) tassels had a more typical distichous (two-ranked) central spike. Most ears showed the two-rank condition expected for teosintes. However, three ears displayed an intermediate (distichous/tristichous or distichous/ tetrastichous) phyllotaxy and one ear was tetrastichous. Our analysis of spikelet and floret development in all Toluca inflorescences revealed a pattern similar to that in landrace and U.S. maize, as well as to their close relatives, the teosintes. We suggest that this investigation may reveal inflorescence development in a natural maize-teosinte hybrid. This study further supports our hypothesis that both maleness and femaleness in the Zea inflorescences are derived from a common developmental pathway and underpins a proposal that andropogonoid grasses share a common pattern of inflorescence development.  相似文献   

17.
采用石蜡切片技术和形态观察对香港四照花(Dendrobenthamia hongkongensis(Hemsl.)Hutch.)花芽分化过程中花芽的形态变化进行观测,研究花芽外部形态与花芽分化之间的关系。结果显示,香港四照花的花芽分化开始于7月上旬,到9月底完成,形态分化过程可分为8个时期:未分化期、花序原基分化期、小花原基分化期、花萼原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期、雌蕊雄蕊形成期。与之对应的外部形态变化为:混合芽闭合,混合芽基部膨大,新叶展开露出圆形花序,花柄初现,花序膨大,花序表面小花突起,花柄伸长至4~6 mm,花序表面小花轮廓明显。香港四照花花芽外部形态能直观地反映出内部结构变化,可根据花芽外部形态特征推测花芽分化状况。研究结果可为香港四照花花期调控和栽培管理提供科学依据。  相似文献   

18.
榛属(桦木科)花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4。6个雄蕊原基,形成4—6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中.出现雄蕊原基纵裂。并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

19.
榛属 (桦木科) 花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4~6个雄蕊原基,形成4~6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中,出现雄蕊原基纵裂,并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

20.
The pistillate inflorescence of Casuarina verticillata is described as consisting of a primary axis bearing whorls of bracts with a cymule in the axil of each bract of the more central whorls. Each cymule consists of an atepallate, two-carpellate, syncarpous floret and two, lateral, once-lobed bracteoles. A “peripheral intercalary” meristem, in which divisions are primarily periclinal, forms a meshwork beneath the bracts from early development and moves the connate bracts centrifugally around the cymules and extends and binds the bracts, and to some extent the bracteoles, of the fertile part of the inflorescence together. Each bract receives a single trace; each cymule receives two traces. Each bundle extension of a cymule trace supplies: 1) a branch which joins its counterpart to become the anterior common carpellary bundle; 2) a second branch which joins its counterpart to become the posterior common carpellary bundle; and 3) a central branch which supplies a lateral bracteole. Within each floret, each common carpellary bundle provides a dorsal carpellary bundle, two ventral carpellary bundles (fertile anterior carpel) or one common ventral bundle (sterile posterior carpel). The ventral bundle-supplies join and form a single placental bundle which lies in the gynoecial septum, and which, in turn, supplies the two ovules in the anterior carpel. Whether the inflorescence is a simple racemose or a condensed cymose type cannot be determined from this species alone. The function of the sclerenchymatous, enclosing bracteoles and connate bracts is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号