首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stability and Activation of Glutamate Apodecarboxylase from Pig Brain   总被引:5,自引:4,他引:1  
The stability and activation of glutamate apodecarboxylase was studied with three forms of the enzyme from pig brain (referred to as the alpha, beta, and gamma forms). Apoenzyme was prepared by incubating the holoenzyme with aspartate followed by chromatography on Sephadex G-25. Apoenzyme was much less stable than holoenzyme to inactivation by heat (for beta-glutamate decarboxylase (beta-GAD) at 30 degrees C, t1/2 values of apo- and holoenzyme were 17 and greater than 100 min). ATP protected holoenzyme and apoenzyme against heat inactivation. The kinetics of reactivation of apoenzyme by pyridoxal-P was consistent with a two-step mechanism comprised of a rapid, reversible association of the cofactor with apoenzyme followed by a slow conversion of the complex to active holoenzyme. The reactivation rate constant (kr) and apparent dissociation constant (KD) for the binding of pyridoxal-P to apoenzyme differed substantially among the forms (for alpha-, beta-, and gamma-GAD, kr = 0.032, 0.17, and 0.27 min-1, and KD = 0.014, 0.018, and 0.04 microM). ATP was a strong competitive inhibitor of activation (Ki = 0.45, 0.18, and 0.39 microM for alpha-, beta-, and gamma-GAD). In contrast, Pi stimulated activation at 1-5 mM but inhibited at much higher concentrations. The results suggest that ATP is important in stabilizing the apoenzyme in brain and that ATP, Pi, and other compounds regulate its activation.  相似文献   

2.
Human glutathione reductase (NADPH + GSSG + H+ in equilibrium with NADP+ + 2 GSH) is a suitable enzyme for correlating spectroscopic properties and chemical reactivities of protein-bound FAD analogues with structural data. FAD, the prosthetic group of the enzyme, was replaced by FAD analogues, which were modified at the positions 8, 1, 2, 4, 5 and 6, respectively, of the isoalloxazine ring. When compared with a value of 100% for native glutathione reductase, the specific activities of most enzyme species ranged from 40% to 17%, in the order of the prosthetic groups 8-mercapto-FAD greater than 8-azido-FAD = 8-F-FAD = 8-C1-FAD greater than 4-thio-FAD = 1-deaza-FAD greater than 2-thio-FAD. The enzymic activities indicate a correct orientation of the bound analogues. The enzyme species containing 5-deaza-FAD and 6-OH-FAD, respectively, had no more glutathione reductase activity than the FAD-free apoenzyme. 5-Deaza-FAD X glutathione reductase was crystallized for X-ray diffraction analysis. Detailed studies were focussed on position 8 of the flavin. 8-Cl-FAD X glutathione reductase and 8-F-FAD X glutathione reductase reacted only poorly with HS- to give 8-mercapto-FAD X glutathione reductase, which suggests that the region around Val61 hinders the halogen anion from leaving the tetrahedral intermediate. Other experiments showed that position 8 is accessible to certain solvent-borne reagents. 8-Mercapto-FAD X glutathione reductase, for instance, reacted readily and stoichiometrically with the thiol reagent methylmethanethiosulfonate. 8-Mercapto-FAD X glutathione reductase does not exhibit a long wavelength charge transfer absorption band upon reduction, as it is the case for the 2-electron-reduced FAD-containing enzyme. This behaviour indicates that the charge transfer interaction between flavin and the thiolate of Cys63 in the native enzyme is not per se essential for catalysis. The absorption spectrum of the blue anionic 8-mercapto-FAD bound to glutathione reductase suggests that the protein concurs to the stabilization of a negative charge in the pyrimidine subnucleus. In light of the protein structure this effect is attributed to the dipole moment of alpha-helix 338-354 which starts out close to the N(1)/C(2)/O(2 alpha) region of the flavin. 1-Deaza-FAD binds as tightly as FAD to the apoenzyme. The resulting holoenzyme was found to be enzymically active but structurally unstable. In this respect 1-deaza-FAD . glutathione reductase mimics the properties of the enzyme species found in inborn glutathione reductase deficiency.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Nitrate reductase extracted from the membrane of Escherichia coli by alkaline heat treatment was purified to homogeneity and used to prepare specific antibody. Nitrate reductase, precipitated by this antibody from Triton extracts of the membrane, contained a third subunit not present in the purified enzyme used to prepare the antibody. Nitrate reductase precipitated by antibody from alkaline heat extracts was composed of peptide fragments of various sizes. These fragments were produced by a membrane-bound protease which was activated by alkaline pH and heat. It is the action of this protease that releases the enzyme from the membrane, as shown by the observations that protease inhibitors decreased the amount of solubilization of the enzyme, and the enzyme remaining in the membrane after heating showed much less proteolytic cleavage than that which was released.  相似文献   

4.
Apoenzyme of the major NAD(P)H-utilizing flavin reductase FRG/FRase I from Vibrio fischeri was prepared. The apoenzyme bound one FMN cofactor per enzyme monomer to yield fully active holoenzyme. The FMN cofactor binding resulted in substantial quenching of both the flavin and the protein fluorescence intensities without any significant shifts in the emission peaks. In addition to FMN binding (K(d) 0.5 microM at 23 degrees C), the apoenzyme also bound 2-thioFMN, FAD and riboflavin as a cofactor with K(d) values of 1, 12, and 37 microM, respectively, at 23 degrees C. The 2-thioFMN containing holoenzyme was about 40% active in specific activity as compared to the FMN-containing holoenzyme. The FAD- and riboflavin-reconstituted holoenzymes were also catalytically active but their specific activities were not determined. FRG/FRase I followed a ping-pong kinetic mechanism. It is proposed that the enzyme-bound FMN cofactor shuttles between the oxidized and the reduced form during catalysis. For both the FMN- and 2-thioFMN-containing holoenzymes, 2-thioFMN was about 30% active as compared to FMN as a substrate. FAD and riboflavin were also active substrates. FRG/FRase I was shown by ultracentrifugation at 4 degrees C to undergo a monomer-dimer equilibrium, with K(d) values of 18.0 and 13.4 microM for the apo- and holoenzymes, respectively. All the spectral, ligand equilibrium binding, and kinetic properties described above are most likely associated with the monomeric species of FRG/FRase I. Many aspects of these properties are compared with a structurally and functionally related Vibrio harveyi NADPH-specific flavin reductase FRP.  相似文献   

5.
Pseudomonas sp. M grown on mevalonate as the sole source of carbon has 200- to 800-fold induced levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The enzyme, which was purified to a homogeneous state in 54% yield (final specific activity, 60.5 mumol of NAD+ reduced per min per mg of protein), converted R-mevalonate (Km = 0.15 mM) to S-HMG-CoA. Activity was sensitive to sulfhydryl modifying reagents. The apparent molecular weight of the holoenzyme was 178,000 and that of the subunit 43,000. The enzyme thus appears to be a tetramer. Comparison of a 23-residue amino-terminal sequence with the cDNA-derived sequence of Chinese hamster ovary cell HMG-CoA reductase showed little homology and antibody raised against the Pseudomonas enzyme did not appear to cross-react with rat liver HMG-CoA reductase. Addition of mevalonate to cells growing on glucose was followed by a rapid and biphasic induction of HMG-CoA reductase activity. During phase I, mevalonate or its catabolites may accumulate in intact cells of Pseudomonas sp. M and acetoacetate, a competitive inhibitor of HMG-CoA reductase (Ki = 3.2 mM), may feedback inhibit the enzyme under these conditions.  相似文献   

6.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475-5480). The new steps in the purification scheme include affinity chromatography on 2',5' ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative 'rocket' immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2',5' ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

7.
Glutathione reductase from the liver of DBA/2J mice was purified to homogeneity by means of ammonium sulfate fractionation and two subsequent affinity chromatography steps using 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose and N6-(6-aminohexyl)-adenosine 2',5'-biphosphate-Sephadex columns. A facile procedure for the synthesis of 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose is also presented. The purified enzyme exhibits a specific activity of 158 U/mg and an A280/A460 of 6.8. It was shown to be a dimer of Mr 105000 with a Stokes radius of 4.18 nm and an isoelectric point of 6.46. Amino acid composition revealed some similarity between the mouse and the human enzyme. Antibodies against mouse glutathione reductase were raised in rabbits and exhibited high specificity. The catalytic properties of mouse liver glutathione reductase have been studied under a variety of experimental conditions. As with the same enzyme from other sources, the kinetic data are consistent with a 'branched' mechanism. The enzyme was stabilized against thermal inactivation at 80 degrees C by GSSG and less markedly by NADP+ and GSH, but not by NADPH or FAD. Incubation of mouse glutathione reductase in the presence of NADPH or NADH, but not NADP+ or NAD+, produced an almost complete inactivation. The inactivation by NADPH was time, pH and concentration dependent. Oxidized glutathione protected the enzyme against inactivation, which could also be reversed by GSSG or other electron acceptors. The enzyme remained in the inactive state even after eliminating the excess NADPH. The inactive enzyme showed the same molecular weight as the active glutathione reductase. The spectral properties of the inactive enzyme have also been studied. It is proposed that auto-inactivation of glutathione reductase by NADPH and the protection as well as reactivation by GSSG play in vivo an important regulatory role.  相似文献   

8.
African trypanosomes contain a cyclic derivative of oxidized glutathione, N1,N8-bis(glutathionyl)spermidine, termed trypanothione. This is the substrate for the parasite enzyme trypanothione reductase, a key enzyme in disulfide/dithiol redox balance and a target enzyme for trypanocidal therapy. Trypanothione reductase from these and related trypanosomatid parasites is structurally homologous to host glutathione reductase but the two enzymes show mutually exclusive substrate specificities. To assess the basis of host vs parasite enzyme recognition for their disulfide substrates, the interaction of bound glutathione with active-site residues in human red cell glutathione reductase as defined by prior X-ray analysis was used as the starting point for mutagenesis of three residues in trypanothione reductase from Trypanosoma congolense, a cattle parasite. Mutation of three residues radically alters enzyme specificity and permits acquisition of glutathione reductase activity at levels 10(4) higher than in wild-type trypanothione reductase.  相似文献   

9.
Membrane-bound nitrate reductase purified from Escherichia coli was resolved into two separate forms. The majority of the enzyme complex had a subunit composition of 2A:2B:4C, exhibited cytochrome b spectra, and was found to be stable after purification. A second form of nitrate reductase activity was a modified complex with a subunit composition of 2A:2B and lacked cytochrome. The subunit B from this complex was altered in its mobility on sodium dodecyl sulfate-polyacrylamide gels. The cytochrome-containing enzyme had 28 +/- 2 atoms of iron and 1.35 atoms of molybdenum whereas iron and molybdenum in cytochromeless enzyme were 24 +/- 2 atoms and 1.18 atoms/molecule, respectively. Besides cytochrome-containing nitrate reductase, two other cytochrome b-containing fractions were also resolved. These were cytochrome b associated with formate dehydrogenase and a novel cytochrome b with reduced absorption maxima at 430, 529.5, and 560 nm. Nitrate reductase cytochrome b (subunit C) was isolated from subunits A and B as a partially denatured form and its renaturation was accomplished by dialyzing against hemin. The renatured cytochrome yielded absorption spectra similar to the holoenzyme. The pure cytochrome aggregated upon heating, even in the presence of sodium dodecyl sulfate. It had a high isoelectric point (pH greater than 9.5) and had 45% hydrophobic amino acids.  相似文献   

10.
ACP1GUA-1, a variant of human erythrocyte acid phosphatase, exists as a polymorphism (allele frequency of .132) in the Guaymi Indians of Central America. This variant has an electrophoretic mobility similar to the common B- and C-type variants, but individuals of the ACP1GUA-1 phenotype have a level of enzyme activity only 27% of the activity expected for the ACP1C variant. The GUA-1 variant is more thermostable than is the B variant, and the order of responsiveness to the modulation of activity by purine analogs and folate is always (B)-(A)-(GUA-1). Thus, the GUA-1 variant is a low-activity variant with C-like regulatory properties. Erythrocytes from individuals of the ACP1GUA-1 phenotype have increased basal levels of glutathione reductase, and a larger fraction of the glutathione reductase protein is present as the holoenzyme, indicating increased levels of flavin adenine dinucleotide in the erythrocytes of these individuals. This is consistent with the suggestion that ACP1 has a physiological function as a flavin mononucleotide phosphatase.  相似文献   

11.
12.
The polypeptide composition of isolated mitochondrial NADH:ubiquinone reductase (NADH dehydrogenase) is very similar to that of material immunoprecipitated from detergent-solubilized bovine heart submitochondrial particles by antisera to the holoenzyme. The specificity of the antisera for dehydrogenase polypeptides was determined by immunoblotting, which showed that antisera reacting with only a few proteins were able to immunoprecipitate all others in parallel. The polypeptide compositions of rat, rabbit and human NADH dehydrogenase were determined by immunoprecipitation of the enzyme from solubilized submitochondrial particles and proved to be very similar to that of the bovine heart enzyme, particularly in the high-Mr region. Further homologies in these and other species were explored by immunoblotting with antisera to the holoenzyme and monospecific antisera raised against iron-sulphur-protein subunits of the enzyme.  相似文献   

13.
14.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475–5480). The new steps in the purification scheme include affinity chromatography on 2′,5′ ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative ‘rocket’ immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2′,5′ ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

15.
The X-ray crystal structure of the enzyme trypanothione reductase, isolated from the trypanosomatid organism Crithidia fasciculata, has been solved by molecular replacement. The search model was the crystal structure of human glutathione reductase that shares approximately 40% sequence identity. The trypanosomal enzyme crystallizes in the tetragonal space group P4(1) with unit cell lengths of a = 128.9 A and c = 92.3 A. The asymmetric unit consists of a homodimer of approximate molecular mass 108 kDa. We present the structural detail of the active site as derived from the crystallographic model obtained at an intermediate stage of the analysis using diffraction data to 2.8 A resolution with an R-factor of 23.2%. This model has root-mean-square deviations from ideal geometry of 0.026 A for bond lengths and 4.7 degrees for bond angles. The trypanosomid enzyme assumes a similar biological function to glutathione reductase and, although similar in topology to human glutathione reductase, has an enlarged active site and a number of amino acid differences, steric and electrostatic, which allows it to process only the unique substrate trypanothione and not glutathione. This protein represents a prime target for chemotherapy of several debilitating tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania. The structural differences between the parasite and host enzymes and their substrates thus provides a rational basis for the design of new drugs active against trypanosomes. In addition, our model explains the results of site-directed mutagenesis experiments, carried out on recombinant trypanothione reductase and glutathione reductases, designed by consideration of the crystal structure of human glutathione reductase.  相似文献   

16.
Nitrate reductase solubilized from the membrane of Escherichia coli by alkaline heat treatment was purified to homogeneity and used to prepare specific antibody. Nitrate reductase, precipitated by this antibody from Triton extracts of the membrane, contained a third subunit, not present in the purified enzyme used to prepare the antibody. This third subunit was identified as the cytochrome b1 apoprotein. This cytochrome is bound to nitrate reductase from wild-type E. coli in a ratio of 2 mol of cytochrome per mol of enzyme complex. In mutants unable to synthesize heme, this cytochrome b1 apoprotein is not bound to nitrate reductase. In these same mutants, the enzyme is overproduced and accumulates in the cytoplasm. The absence of cytochrome also affects the stability of the membrane-bound form of the enzyme.  相似文献   

17.
The catalytic properties of glutathione reductase from human erythrocytes have been studied over a range of buffer conditions and substrate concentrations. This study provides optimal conditions for determining the basic kinetic parameters of the enzyme. The catalytic behaviour of glutathione reductase is consistent with spatially separated binding sites for its substrates. In certain assays anomalies were observed which are correlated with an inactivation of the enzyme by NADPH. Concurrent sedimentation experiments showed that NADPH promoted aggregation of the enzyme. Both inactivation and aggregation could be connected with oxidation of thiols at the active site. The relation of the properties of glutathione reductase to cellular conditions is discussed.  相似文献   

18.
Glutathione reductase (NAD(P)H : oxidised-glutathione oxidoreductase, EC 1.6.4.2) was purified from baker's yeast by a new procedure involving affinity chromatography on 2',5'-ADP-Sepharose 4B. The yield was 65% of essentially homogeneous enzyme. The activity was assayed with both glutathione disulfide (GSSG) and the mixed disulfide of coenzyme A and glutathione (CoAssg). The two disulfide substrates gave coinciding activity profiles and a constant ratio of the activities in different chromatographic and electrophoretic systems. No evidence was obtained for the existence of a reductase specific for CoASSG distinct from glutathione reductase. It is concluded that normal baker's yeast contains a single reductase active with both GSSG and CoASSG.  相似文献   

19.
The enzyme glutathione reductase (GR) recycles oxidized glutathione (GSSG) by converting it to the reduced form (GSH) in an NADPH-dependent manner. A specific antibody raised against recombinant rat GR was used to localize the protein in the female reproductive organs during the estrous cycle in the rat. In the ovary, the strongest reactivity to the antibody was observed in oocytes, followed by granulosa cells, corpus luteum, and interstitial cells. A strongly positive reaction was also observed mainly in the oviduct epithelia, uterine epithelia, and endometrial gland in the reproductive tract. Oviducts contained the highest GR activity. The GR activity of uterus during metestrus was about twice as high as that for other stages of the cycle. The levels of GR proteins in the tissues roughly matched the activities. The expression of the GR mRNA was highest during metestrus. Because GSH is known to increase gamete viability and the efficiency of fertility, GR, which is expressed in these tissues, is predicted to play a pivotal role in the reproduction process as a source of GSH.  相似文献   

20.
H S Hsieh  H E Ganther 《Biochemistry》1975,14(8):1632-1636
The production of acid-volatile selenide (apparently H2Se) was catalyzed by glutathione reductase in an anaerobic system containing 20 mM glutathione, 0.05 mM sodium selenite, a TPNH-generating system, and microgram quantities of highly purified yeast glutathione reductase. H2Se production in this system was proportional to glutathione reductase concentration and was maximal at pH 7. Significant nonenzymic H2Se production occurred in the system lacking glutathione reductase and TNPH. A concentration of arsenite (0.1 mM) which does not inhibit glutathione reductase inhibited selenide volatilization, as did bovine serum albumin (1.67 mg/ml). Both appear to inhibit Se volatilization by reacting with the selenide product(s). The selenotrisulfide derivative of glutathione (GSSeSG) was readily converted to H2Se by glutathione reductase and TPNH without the addition of glutathione. These results suggest that GSSeSG formed nonenzymically from glutathione and selenic undergoes stepwise reduction by glutathione reductase (or excess GSH) to GSSeH and finally to H2Se. The same pathway operates when glutathione is used as the reducing agent but to a lesser extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号