首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dorsal root ganglia, excised from the lumbar roots of the sciatic nerve of white Leghorn chicken embryos 6-13 days of age, were incubated usually for 5 h, at 36 degrees C in 20 microliters of a bicarbonate-buffered physiological salt solution containing 5.5 mM glucose. [U-14C]Glucose, [1-14C]glucose, [6-14C]glucose, or [5-3H]uridine was also added. Lipid synthesis and lactate output were measured by incorporation of 3H from [5-3H]uridine. Glucose uptake and labeled lactate output declined rapidly from 6 to 8-9 days of age, more slowly thereafter. Synthesis of lipids was relatively constant throughout the ages studied, without the increased rate at intermediate ages seen previously in sympathetic ganglia of the same species. RNA synthesis declined progressively throughout the ages studied. The output of C-6 of glucose to CO2 was about the same at all ages, whereas that of C-1 declined rapidly from 6 to 7 days of age and then more slowly, but always remained higher than that of C-6 and thus indicated that much glucose was metabolized via the hexosemonophosphate shunt.  相似文献   

2.
The difference between the 14CO2 outputs from [1-14C]glucose and [6-14C]glucose has frequently been used as a measure of activity in the hexose monophosphate shunt without considering the exact significance of this difference. Assuming only 1) that all C-1 of glucose is released to CO2 on entry to the shunt and 2) that the shunt provides the only mechanism for increasing C-1 of glucose over C-6 of glucose in CO2, it is very simply shown that the flux from glucose to the shunt is not less than the difference between the 14CO2 outputs at any time after adding labeled glucose nor more than the steady-state output of 14CO2 from [1-14C]glucose. Moreover, absence of a 14CO2 difference does not prove that the shunt is absent or inactive. The value for the minimum flux rate can be maximized by following the time course of the C-1 - C-6 difference in 14CO2 during the transient phase before isotopic equilibration is complete, but useful values can be obtained when the time course is not available. The above relationships are applicable to gluconeogenic as well as non-gluconeogenic tissues. Applications of these relationships to peripheral ganglia from chicken embryos, in which the 14CO2 difference passes through a maximum during incubation, show that 27-37% of the glucose taken up enters the pentose cycle in sympathetic ganglia from 10-day-old embryos, while 17-36% enters the cycle in 15-day-old dorsal root ganglia.  相似文献   

3.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

4.
Chains of sympathetic ganglia were excised from the lumbar region of white Leghorn chicken embryos, 8-19 days of age, and incubated, usually for 5 h, at 36 degrees C in a bicarbonate-buffered physiological salt solution containing [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, or [5-3H]uridine. Lipid synthesis was measured by the incorporation of 14C into lipids, and RNA synthesis by the accumulation of 3H into macromolecules. The ratio of 14C put out in CO2 during the second hour of incubation in the presence of [1-14C]glucose to that with [6-14C]glucose was used as an index of activity in the hexosemonophosphate shunt (HMS). Both the rate of lipid synthesis and activity in the HMS reached well-defined maxima at about 11 days of embryonic age. There was no evidence of a similar rise and fall of RNA synthesis during the ages studied. Estimates of the rate of NADPH production by the HMS at near-peak lipid synthesis varied over a twofold range that included the rate needed for the observed lipid synthesis. The results thus support, quantitatively as well as qualitatively, the supposition that the HMS is accelerated during development to sustain lipid synthesis.  相似文献   

5.
Metabolism of [1-14C]glucose and [6-14C]glucose was measured in sympathetic ganglia excised from chicken embryos 12-16 days old and in primary cultures of neurons or nonneurons prepared from these ganglia. Some metabolic rates tended to change with the tissue/medium ratio, so this variable had to be controlled. Less C-6 than C-1 od glucose was put out in CO2 by all three types of preparations, indicating operation of the hexosemonophosphate shunt. The C-6/C-1 ratio was greater for the neuronal cultures and for intact ganglia than for the nonneuronal cultures. The C-6/C-1 ratio for the neurons increased with the amount of tissue added to a given volume of incubation medium, in agreement with previous experiments on embryonic dorsal root ganglia (Larrabee, 1978). Per unit of protein, the output of C-1 of glucose in CO2 was higher in both the neuronal and the nonneural cultures than in intact ganglia, whereas that of C-6 was higher in the neuronal cultures and lower in the nonneuronal ones than in the ganglia. The rates of release in lactate of C-1 and C-6 of glucose were 3-5 times higher from both types of cultures than from intact ganglia. The average rates of incorporation of C-1 and C-6 of glucose into tissue constituents were lower in the cultures than in intact ganglia, significantly so for incorporation of C-6 in the nonneuronal cultures.  相似文献   

6.
Alanine Uptake and Release by Sympathetic Ganglia of Chicken Embryos   总被引:5,自引:4,他引:1  
Uptake and release of alanine were measured in lumbar sympathetic chains excised from embryos of white leghorn chickens, 14-15 days old, and incubated in a modified Eagle's minimum essential medium. In the presence of [U-14C]glucose, glucose carbon accumulated in alanine in the medium at a rate that increased when unlabeled alanine was added and sometimes exceeded the rate of appearance in lactate. When combined with uptake data, the increase in appearance of labeled alanine in the medium could be accounted for quantitatively by interference with its reuptake, without assuming a change in the unidirectional output of labeled alanine, provided allowance was made for the measured properties of exchange between the extracellular space and the surrounding medium. According to this model, the constant unidirectional outflux of labeled alanine was about 50 mumol/g dry weight/h. When [U-14C]alanine was added to medium containing unlabeled glucose, the alanine was consumed at a rate that increased as the concentration of alanine in the medium was elevated. The uptake rate was found to fit a modified Michaelis-Menten equation with a Umax of about 120 mumol/g dry weight/h, a Km of 0.5-1.0 mM, and a Kd of 0.75 ml/g dry weight/h. By chemical measurement of changes in alanine concentration in the medium during incubation, the uptake rate was shown to equal the output rate when about 0.2 mM alanine was present. Much of the alanine consumed in the presence of glucose was metabolized to CO2, raising the total CO2 output above the rate obtained with glucose alone. When alanine was present at a concentration of 10-20 mM, it contributed almost as much carbon to CO2 as did the glucose. A higher percentage of the carbon from alanine was incorporated into tissue constituents than was carbon from either glucose or lactate. It is concluded that alanine can be significant both as a product and as a substrate, but that its role as substrate would not be great at typical concentrations of alanine in blood.  相似文献   

7.
Abstract— The available models of carbohydrate metabolism are not suitable for analysis of experiments on dorsal root ganglia of chicken embryos because they assume that certain products of the pentose cycle mix freely with those of glycolysis, which appears not to be true in this tissue, and because full isotopic equilibration, needed before the start of measurements, is not achieved while the excised ganglia are reasonably fresh. Therefore, new equations were developed which assume only a steady state of relevant metabolic intermediates and make use of the process of isotopic equilibration as a source of information. It is also assumed that an initially unknown but calculable fraction of the products of each pentose cycle re-enters the next cycle, the remainder leaking either to glycolysis or to the incubation medium. From measurements of the time course of output of labelled CO2 in the presence of [1-14C]- and [6-14C]glucose and the incorporation and release in lactate of labelled C from [l-14C]glucose, the equations permit the estimation of many features of carbohydrate metabolism, such as the partitioning of material between the pentose cycle and glycolysis, the partitioning of CO2 output between the pentose and citric acid cycles, the partitioning of the products of glycolysis between CO2 and other destinations, such as lactate, and the degree of recycling from one pentose cycle into the next. In addition, the time course of labelled CO2 output from [2-14C]glucose can be predicted; this, by comparison with the observed output, serves to support some variants of the basic model, while invalidating others. In dorsal root ganglia from 15-day chicken embryos, the assumption of a metabolic steady state was supported by a constant output of labelled CO2 from [l-14C]glucose for 15 or more hours, except for the initial period of isotopic equilibration. By use of the new equations, it is concluded that in these ganglia (a) recycling in the pentose cycle can be 100% efficient in some incubation conditions, but not in others, (b) more CO2 is released from the pentose cycle than from the citric acid cycle, (c) large, quantifiable differences exist between the utilization of the various carbon atoms of glucose, and (d) a pool of intermediates within the pentose cycle, with a time constant of about 1 h, explains a large delay observed in the output of C-6 of glucose into CO2, which occurs with a time constant as long as 5 h under some conditions. Under conditions where recycling is complete in the pentose cycle, this cycle must operate in isolation from glycolysis, which would otherwise convert much of the output of the pentose cycle to lactate. This may explain the role of fructose-1,6-diphospha-tase in the tissue, without recourse to the oft-proposed, puzzling, and ATP-degrading‘futile cycle’between fructose-6-P and fructose-1,6-diP. It is proposed that the new equations may be suitable for similar analyses on some, but not all, other tissues.  相似文献   

8.
Abstract: Uptake and output of lactate were measured in lumbar sympathetic chains excised from embryos of white leghorn chickens, 14–15 days old. The chains, typically containing 30–40 μg of protein, were incubated in Eagle's minimum essential medium containing bicarbonate buffer, 6–17 mM glucose, various concentrations of lactate, and either [U-14C]lactate, [1-14C]glucose, or [6-14C]glucose. The average rate of uptake of labeled lactate was measured with incubations of 5–6 h, starting with various external lactate concentrations. From these data the instantaneous relation between lactate uptake rate and concentration was deduced with a simple computerized model. The instantaneous uptake rate increased with the concentration according to a relation that fit the Michaelis-Menten equation, with Vmax = 360 μmol/g protein/h and Km = 4.8 mM. Substantial fractions of the lactate carbon were recovered from tissue constituents and in several nonvolatile products in the medium, as well as in CO2. Glucose uptake averaged about 108 μmol/g protein/h and did not vary greatly with external lactate concentration, although the metabolic partitioning of glucose carbon was considerably affected. Regardless of initial concentration, the lactate concentration in the medium tended to change towards approximately 0.6 mM, showing that uptake equaled output at this level, with rates at about 40 μmol/g protein/h. With the steady-state concentration of 0.6 mM lactate, about 20% of the glucose carbon was shunted out into the medium before it was reabsorbed and metabolized into various products. Lactate uptakes by neuronal and nonneuronal cultures prepared from the ganglia did not differ consistently from one another or from uptake by undissociated ganglia. The neuronal cultures tended to oxidize a greater fraction of the consumed lactate to CO2 and to convert a smaller fraction of the lactate to products in the medium than did the nonneuronal cultures. Computer modeling, using known parameters for blood-brain transport of lactate in the adult rat and data on uptake by the ganglia, suggests that lactate may supply substantial fuel to the brain, even in the presence of abundant glucose, when the lactate concentration in the blood is raised to levels commonly observed in exercising humans, such as 10–20 mM. This is in agreement with the findings of several investigators in hypoglycemic humans and in animals with intermediate blood lactate concentrations.  相似文献   

9.
10.
Incorporation of labelled precursors into RNA and protein was measured in lumbar sympathetic ganglia from chicken embryos (usually 13-14 days old) in the presence . or absence of nerve-growth factor. The ganglia were incubated with labelled precursors while embedded in plasma clots, so that the outgrowth of nerve fibres could be measured in the same ganglia as the incorporation. Fibre outgrowth was estimated quantitatively by the use of a newly-devised objective measure of mean halo width. In controls without the nerve-growth factor, there was an abrupt slowing of labelling of both RNA and protein after 6-12 h. This slowing was greatly delayed or prevented by addition of the growth factor. At earlier times, small increases in incorporation of both labels accompanied addition of the growth factor, but were not always statistically significant. When ganglia were incubated for 28 h with labelled precursors in the presence of the growth factor, 11 per cent of both the labelled protein and the labelled RNA were found in the halos of outgrowing fibres and 89 per cent in the bodies of the ganglia. In ganglia from embryos of different ages, there was a maximum of labelling per unit volume of ganglion in both RNA and protein at 10 days and a minimum at 12 days of embryonic age. The growth factor increased the labelling during 22 h of incubation at most ages, regardless of whether outgrowth of fibres was great (13-14 days) or minimal (9-10 days). Almost total inhibition of RNA labelling by actinomycin-D caused only moderate impairment of fibre outgrowth. Actinomycin-D also somewhat reduced protein labelling. Cyclo-heximide, in concentrations which produced degrees of inhibition of protein labelling identical to those of actinomycin-D, caused similar impairment of fibre outgrowth. We conclude that RNA synthesis is not essential to the initiation of fibre outgrowth by the nerve-growth factor.  相似文献   

11.
A microsomal preparation from chondroitin 4-sulfate-synthesizing cultured mouse mastocytoma cells was incubated with UDP-[3H]GalNAc, UDP-GlcA, and 3'-phosphoadenylylphosphosulfate (PAPS) for 30 s at 10 degrees C and with UDP-[14C]GlcA, UDP-GalNAc, and PAPS for 4 h at 37 degrees C for synthesis of 3H- and 14C-labeled chondroitin/chondroitin sulfate. The latter incubation provided more than 100 times as much product as did the short incubation at 10 degrees C. Upon chromatography of the isolated labeled glycosaminoglycans on a Sepharose CL-6B column, most of the [14C]glycosaminoglycan from the 4 h, 37 degrees C incubation was excluded from the column, indicating that this nascent glycosaminoglycan had been polymerized fully. In contrast, most of the [3H]glycosaminoglycan from the 30 s, 10 degrees C incubation was mostly retarded upon cochromatography on this same column, indicating that the nascent glycosaminoglycan was still growing in size. The labeled fractions representing chondroitin/chondroitin sulfate of varying sizes were analyzed for degree of sulfation by degradation with chondroitin ABC lyase followed by paper electrophoresis of the products. Results indicated that the [14C]chondroitin/chondroitin sulfate formed in the 4-h incubation was 60-70% sulfated. Incomplete chains of [3H]chondroitin/chondroitin sulfate formed in the 30-s incubation were also sulfated as much as 20-25%. As the size of the [3H]chondroitin/chondroitin sulfate increased, there was a concomitant increase in sulfation. These results demonstrate that in this microsomal system sulfation takes place while the nascent chondroitin glycosaminoglycan chains are still actively growing in length, although the sulfation lags somewhat behind the polymerization. This not only indicates a common membrane location for both polymerization and sulfation of chondroitin but also demonstrates that the sulfation of chondroitin by these mastocytoma cells may occur during the process of glycosaminoglycan polymerization rather than subsequent to completion of the glycosaminoglycan chains.  相似文献   

12.
The fate of the C1 and C2 of glucose-derived acetyl residues was examined in rat pancreatic islets. The production of 14CO2 from D-[2-14C]glucose exceeded that from D-[6-14C]glucose, in the same manner as the oxidation of [1-14C]acetate exceeded that of [2-14C]acetate. The difference in 14CO2 output from D-[2-14C]glucose and D-[6-14C]glucose was matched by complementary differences in the generation of 14C-labeled acidic metabolites and amino acids. Even the production of 14C-labeled L-lactate was somewhat higher in the case of D-[6-14C]glucose than D-[2-14C]glucose. The ratio between D-[2-14C]glucose and D-[6-14C]glucose oxidation progressively decreased at increasing concentrations of the hexose (2.8, 7.0, and 16.7 mM), was higher after 30 than 120 min incubation, and was decreased in the presence of a nonmetabolized analogue of L-leucine. These findings are consistent with the view that the difference between D-[6-14C]glucose and D-[2-14C]glucose oxidation is mainly attributable to the inflow into the Krebs cycle of unlabeled metabolites generated from endogenous nutrients, this being compensated by the exit of partially labeled metabolites from the same cycle. The present results also indicate that the oxidation of glucose-derived acetyl residues relative to their generation in the reaction catalyzed by pyruvate dehydrogenase is higher than that estimated from the ratio between D-[6-14C]glucose and D-[3,4-14C]glucose conversion to 14CO2.  相似文献   

13.
—Previously published equations for analysis of [14C]glucose metabolism assumed that products of glycolysis enter the citric acid cycle only through acetyl-CoA (Larrabee , 1978). These equations are now extended to include entrance into the citric acid cycle through the pyruvate carboxy-lase reaction as well as via acetyl-CoA and are applied to previously reported data from dorsal root ganglia of 15-day-old chicken embryos. The rate of output of labelled CO2 in the presence of [2-14C] glucose could not be accounted for if the flux rate into the citric acid cycle through the pyruvate carboxylase reaction was assumed to be more than about 10–15% of that through acetyl-CoA. It is concluded (1) that the pyruvate carboxylase reaction is a relatively minor source of material for the citric acid cycle in these ganglia and (2) that the previous conclusions about [14C]glucose metabolism, which ignored the pyruvate carboxylase reaction, need not be modified in the light of this reanalysis.  相似文献   

14.
The flux rates of lactate and alanine in and out of the cells of an intact tissue, which cannot be measured directly because some of the released materials are reabsorbed, were determined by computer analysis of uptakes and outputs by the whole tissue in the presence of various concentrations of these substances. The outputs of labeled lactate and alanine from [U-14C]glucose and the uptakes of [U-14C]lactate and [U-14C]alanine were measured on intact sympathetic ganglia excised from 15-day-old chicken embryos. The volume and time constant of the extracellular space were measured using labeled lactate, alanine, and sucrose. Models, which mathematically described the cellular uptakes and outputs as functions of the extracellular concentrations, were used to predict the exchanges that would be observed on the whole tissue, and their parameters were adjusted for best fit to the actual observations. The fitted models were then used to calculate the fluxes in and out of the cells and the concentrations in the extracellular space. The following results were obtained: (1) Cellular uptakes of lactate and alanine were both well described by familiar Michaelis-Menten kinetics. (2) The cellular output of [14C]-lactate from [14C]glucose declined with increase in the extracellular lactate concentration, whereas the cellular output of [14C]alanine from [14C]glucose rose with the extracellular alanine concentration. (3) Half-saturation values for cellular uptake, determined from the fitted equations, were 0.45 mM for lactate and 1.17 mM for alanine, both several-fold lower than less relevant estimates for the whole tissue made directly from the uptake observations. (4) As much as 45% of the carbon in the glucose consumed was released into the extracellular space as lactate and alanine, but much of this was reabsorbed. Implications for brain metabolism are discussed.  相似文献   

15.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.  相似文献   

16.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14C]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26 degrees C to 34 degrees C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Superior cervical ganglion phospholipase A2 activity was characterized using 1-palmitoyl-2-[1-14C]arachidonoyl-sn-glycero-3-phosphocholine as a substrate. The enzyme activity exhibited linearity with interval of incubation and tissue concentration; there appeared to be two pH optima of the enzyme, at pH 6.0 and 9.0. A Lineweaver-Burk plot of the reciprocal of activity versus substrate concentration yielded an apparent Km of 0.53 mM and a Vmax of 5.3 nmol/h/mg of protein. The enzyme exhibited a partial Ca2+ dependence; in the absence of Ca2+ and presence of EGTA, activity was reduced by 40%. The phospholipase A2 activity was heat sensitive and was completely inactivated after treatment at 100 degrees C for 30 min. For determination of whether the enzyme had a preference for hydrolysis of specific fatty acid substituents in the 2 position of phosphatidylcholine, several different substrates were tested. The order of preference for hydrolysis by the ganglionic enzyme was 1-palmitoyl-2-[1-14C]arachidonoyl-sn-glycero-3-phosphocholine = 1-palmitoyl-2-[1-14C]linoleoyl-sn-glycero-3-phosphocholine greater than 1-palmitoyl-2-[1-14C]palmitoyl-sn-glycero-3-phosphocholine. For determination of the localization of the phospholipase A2 enzyme in sympathetic ganglia, two approaches were used. Guanethidine, which results in destruction of adrenergic cell bodies in sympathetic ganglia, was administered to rats; an approximately 50% decline in phospholipase A2 activity was observed after this treatment. In other experiments, the preganglionic nerve to the ganglion was sectioned in rats; after 2 weeks of denervation, no significant change in ganglionic phospholipase A2 activity was seen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A sterile glucose-mineral salts broth was inoculated with conidia of Penicillium rubrum P-13 and P-3290. Radiolabeled compounds were added to some cultures, these being incubated quiescently at 28° C for 14 days. Other stationary cultures were grown for 21 days, received labeled compounds, and were then grown for 5 more days. The remaining cultures were inoculated with 72-h-old mycelial pellets, received labeled materials and were incubated with shaking for 60 h. Rubratoxin was resolved by thin-layer chromatography. Labeled [114C]acetate, [1,514C]citrate, [214C]malonate, [114C]glucose, [U14C]glucose or [114C]hexanoate were incorporated into rubratoxins A and B by P. rubrum 3290 and into rubratoxin B by P. rubrum 13. Incorporation of [114C]acetate and [214C]malonate increased when exogenous unlabeled acetate, malonate, pyruvate, or phosphoenol-pyruvate was added. Acetate incorporation was influenced by cultural conditions, attaining maximum amounts in quiescent cultures which received labeled acetate after 21 days of incubation. Acetate incorporation in shake cultures was enhanced by reduced nicotinamide adenine dinucleotide phosphate (NADPH) and by unlabeled exogenous citrate.Abbreviations GMS glucose-mineral salts - RCM replacement culture medium - TCA tricarboxylic acid - PEP phosphoenolpyruvate - RIC relative isotopic content - PI percent incorporation  相似文献   

19.
Intensity of fatty acids and separate classes of lipids synthesis was studied in vitro in the liver of white rats at loading by cholesterol in the dose of 300 mg/kg once a day during 30 days by incubation of organ homogenate with [6-(14)C] glucose, [2-(14)C] lysine, [1-(14)C] palmitic acid with following determination of radioactivity of fatty acids, phospholipids, cholesterol, acylglycerols radioactivity was investigated. The inhibition of fatty acids and separate classes of lipids synthesis in vitro in the liver of white rats at loading by cholesterol at the use of [6-(14)C] of glucose and [2-(14)C] lysine, as predecessors of fatty acids and lipids and stimulation of lipids synthesis at the use of [1-(14)C] palmitic acid as the predecessor was established. The loading of white rats by cholesterol results in its synthesis inhibition in the liver during incubation of its homogenates with [6-(14)C] glucose and does not influence the cholesterol synthesis during incubation of homogenates with [2-(14)C] lysine and [1-(14)C] palmitic acid. Thus synthesis of fatty acids and their use in the phospholipids and acylglycerols synthesis in the liver of white rats with hypercholesterolemia sharply decreases during incubation of their homogenates with [6-(14)C] glucose and [2-(14)C] lysine, and the synthesis of cholesterol, phospholipids and acylglycerols - increases during incubation with [1-(14)C] palmitic acid.  相似文献   

20.
Sympathectomy (Sx) of the submandibular gland was induced at various postnatal ages by ip administration of a single dose of reserpine or by unilateral excision of a superior cervical ganglion. If animals were 12 days old or less at the time of drug administration, [Ca] of the submandibular gland was not measurably increased 24 hr later; if rats were 14 days of age or older, [Ca] of the gland 24 hr after reserpine injection was nearly double that of untreated controls. Two days after surgical Sx, [Ca] of the denervated submandibular gland was unchanged from that of the innervated member of a pair if animals were less than 14 days of age at the time of denervation; [Ca] was twice that of glands of control rats if animals were older than 14 days of age when the denervation was performed. The anti-tumor agent, cyclocytidine (CC), given daily for 3 days in an ip dose of 500 mg/kg, also caused a two- to threefold increase in [Ca] of the submandibular gland when rats were more than 12 days of age at the time of the initial injection of the drug, but in rats younger than this age, CC caused no change in the [Ca] of the submandibular gland. Present data show that there are age-related differences in the ability of the submandibular gland to accumulate calcium following sympathetic denervation or treatment with a norepinephrine-releasing drug. These differences may be attributed either to incomplete development of calcium transport mechanisms, or incomplete development of the sympathetic innervation before 14 days of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号