首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most intriguing environmental gradients connected with variation in diversity is ecosystem productivity. The role of diversity in ecosystems is pivotal, because species richness can be both a cause and a consequence of primary production. However, the mechanisms behind the varying productivity-diversity relationships (PDR) remain poorly understood. Moreover, large-scale studies on PDR across taxa are urgently needed. Here, we examined the relationships between resource supply and phyto-, bacterio-, and zooplankton richness in 100 small boreal lakes. We studied the PDR locally within the drainage systems and regionally across the systems. Second, we studied the relationships between resource availability, species richness, biomass and resource ratio (N:P) in phytoplankton communities using Structural Equation Modeling (SEM) for testing the multivariate hypothesis of PDR. At the local scale, the PDR showed variable patterns ranging from positive linear and unimodal to negative linear relationships for all planktonic groups. At the regional scale, PDRs were significantly linear and positive for phyto- and zooplankton. Phytoplankton richness and the amount of chlorophyll a showed a positive linear relationship indicating that communities consisting of higher number of species were able to produce higher levels of biomass. According to the SEM, phytoplankton biomass was largely related to resource availability, yet there was a pathway via community richness. Finally, we found that species richness at all trophic levels was correlated with several environmental factors, and was also related to richness at the other trophic levels. This study showed that the PDRs in freshwaters show scale-dependency. We also documented that the PDR complies with the multivariate model showing that plant biomass is not mirroring merely the resource availability, but is also influenced by richness. This highlights the need for conserving diversity in order to maintain ecosystem processes in freshwaters.  相似文献   

2.
We tested for disproportional changes in annual and seasonal species richness and biomass among five trophic levels (phytoplankton, herbivorous, omnivorous, and carnivorous zooplankton, and fish) as well as altered trophic structure and ecosystem function following the 5-year experimental acidification of Little Rock Lake (Wisconsin, USA) from pH 6.1 to 4.7. Abiotic and biotic controls of trophic level response during acidification were also identified. Asymmetric reductions of species richness among trophic levels, separated by life stage and feeding type, were evident and changes in trophic structure were most pronounced by the end of the acidification period. Relative declines in richness of fish and zooplankton were greater than phytoplankton, which were generally unaffected, leading to a reduction of upper trophic level diversity. Each of the lower four trophic levels responded to a distinct combination of abiotic and biotic variables during acidification. pH was identified as a direct driver of change for only carnivorous zooplankton, while all other trophic levels were affected more by indirect interactions caused by acidification. Fluctuations in ecosystem function (zooplankton biomass and primary production) were also evident, with losses at all trophic levels only detected during the last year of acidification. The acidified basin displayed a tendency for greater variation in biomass for upper trophic levels relative to reference conditions implying greater unpredictability in ecosystem function. Together, these results suggest that trophic asymmetry may be an important and recurring feature of ecosystem response to anthropogenic stress.  相似文献   

3.
4.
Biodiversity and ecosystem function are often correlated, but there are multiple hypotheses about the mechanisms underlying this relationship. Ecosystem functions such as primary or secondary production may be maximized by species richness, evenness in species abundances, or the presence or dominance of species with certain traits. Here, we combine surveys of natural fish communities (conducted in July and August 2016) with morphological trait data to examine relationships between biodiversity and ecosystem function (quantified as fish community biomass) across 14 subtidal eelgrass meadows in the Northeast Pacific (54°N, 130°W). We employ both taxonomic and functional trait measures of diversity to investigate whether ecosystem function is best predicted by species diversity (complementarity hypothesis) or by the presence or dominance of species with particular trait values (selection or dominance hypotheses). After controlling for environmental variation, we find that fish community biomass is maximized when taxonomic richness and functional evenness are low, and in communities dominated by species with particular trait values, specifically those associated with benthic habitats and prey capture. While previous work on fish communities has found that species richness is often positively correlated with ecosystem function, our results instead highlight the capacity for regionally prevalent and locally dominant species to drive ecosystem function in moderately diverse communities. We discuss these alternate links between community composition and ecosystem function and consider their divergent implications for ecosystem valuation and conservation prioritization.  相似文献   

5.
Loss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms are still elusive, and intraspecific biodiversity–ecosystem function (iBEF) relationships have been restrained to primary producers. Here, we manipulated genetic and functional richness of a fish consumer (Phoxinus phoxinus) to test whether iBEF relationships exist in consumer species and whether they are more likely sustained by genetic or functional richness. We found that both genotypic and functional richness affected ecosystem functioning, either independently or interactively. Loss in genotypic richness reduced benthic invertebrate diversity consistently across functional richness treatments, whereas it reduced zooplankton diversity only when functional richness was high. Finally, losses in genotypic and functional richness altered functions (decomposition) through trophic cascades. We concluded that iBEF relationships lead to substantial top-down effects on entire food chains. The loss of genotypic richness impacted ecological properties as much as the loss of functional richness, probably because it sustains “cryptic” functional diversity.

Global change is expected to generate a loss of intraspecific diversity worldwide. This mesocosm study explores whether loss of genetic and functional diversity in a predator species affects community and ecosystem functioning of lower trophic levels in pond ecosystems, revealing that diversity loss in a single consumer species can impact an entire ecosystem, reducing its functionality.  相似文献   

6.
In order to evaluate latitudinal differences in the relationship of phytoplankton biomass and diversity with environmental conditions in shallow lakes, we sampled 98 shallow lakes from three European regions: Denmark (DK), Belgium/The Netherlands (BNL) and southern Spain (SP). Phytoplankton biomass increased with total phosphorus (TP) concentrations and decreased with submerged macrophyte cover across the three regions. Generic richness was significantly negatively related to submerged macrophyte cover and related environmental variables. Zooplankton:phytoplankton biomass ratios were positively related to submerged macrophyte cover and negatively to phytoplankton generic richness in DK and BNL, suggesting that the low generic richness in lakes with submerged macrophytes was due to a higher zooplankton grazing pressure in these regions. In SP, phytoplankton generic richness was not influenced by zooplankton grazing pressure but related to conductivity. We observed no relationship between phytoplankton generic richness and TP concentration in any of the three regions. The three regions differed significantly with respect to mean local and regional generic richness, with BNL being more diverse than the other two regions. Our observations suggest that phytoplankton diversity in European shallow lakes is influenced by submerged macrophyte cover indirectly by modulating zooplankton grazing. This influence of submerged macrophytes and zooplankton grazing on phytoplankton diversity decreases from north to south.  相似文献   

7.
Biodiversity–ecosystem functioning (BEF) theory has largely focused on species richness, although studies have demonstrated that evenness may have stronger effects. While theory and numerous small‐scale studies support positive BEF relationships, regional studies have documented negative effects of evenness on ecosystem functioning. We analysed a lake dataset spanning the continental US to evaluate whether strong evenness effects are common at broad spatial scales and if BEF relationships are similar across diverse regions and trophic levels. At the continental scale, phytoplankton evenness explained more variance in phytoplankton and zooplankton resource use efficiency (RUE; ratio of biomass to resources) than richness. For individual regions, slopes of phytoplankton evenness–RUE relationships were consistently negative and positive for phytoplankton and zooplankton RUE, respectively, and most slopes did not significantly differ among regions. Findings suggest that negative evenness effects may be more common than previously documented and are not exceptions restricted to highly disturbed systems.  相似文献   

8.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

9.
The mechanisms underpinning forest biodiversity‐ecosystem function relationships remain unresolved. Yet, in heterogeneous forests, ecosystem function of different strata could be associated with traits or evolutionary relationships differently. Here, we integrate phylogenies and traits to evaluate the effects of elevational diversity on above‐ground biomass across forest strata and spatial scales. Community‐weighted means of height and leaf phosphorous concentration and functional diversity in specific leaf area exhibited positive correlations with tree biomass, suggesting that both positive selection effects and complementarity occur. However, high shrub biomass is associated with greater dissimilarity in seed mass and multidimensional trait space, while species richness or phylogenetic diversity is the most important predictor for herbaceous biomass, indicating that species complementarity is especially important for understory function. The strength of diversity‐biomass relationships increases at larger spatial scales. We conclude that strata‐ and scale‐ dependent assessments of community structure and function are needed to fully understand how biodiversity influences ecosystem function.  相似文献   

10.
We investigated the predatory effects of Dytiscus alaskanus, a large predaceous diving beetle, on the biomass, species composition and diversity of fishless pond communities. The effects were tested using presence and absence treatments of D. alaskanus in 24 mesocosms distributed among six ponds. We sampled phytoplankton, zooplankton and macroinvertebrates every two weeks for a six week period. Periphyton was sampled from the mesocosm walls on the final day. Total macroinvertebrate biomass decreased in the presence of dytiscids while species richness was not affected. Macroinvertebrate predators, snails and Gammarus lacustris decreased in the dytiscid treatments. Laboratory feeding experiments confirmed feeding preferences consistent with the mesocosm results. Periphyton biomass was six times greater in the dytiscid enclosures, concomitant with the decreased grazing by gastropods and other invertebrate primary consumers indicating a benthic trophic cascade. Top–down effects of dytiscids on other predatory invertebrates led to increased total zooplankton biomass, largely due to increased abundances of large and small cladocerans. Zooplankton species richness increased in the dytiscid enclosures. Inconsistent with trophic cascade theory, phytoplankton did not respond to top–down effects of D. alaskanus within the study period. Overall, the results show D. alaskanus predation caused trophic effects via two distinct food chains, a dytiscid–snail–periphyton trophic cascade, and a dytiscid–predatory macroinvertebrates–zooplankton partial trophic cascade.  相似文献   

11.
Diversity measures reflect different aspects of a community, which are determined by different ecological processes. However, information is still limited on the ecological processes that are represented by different measures of species diversity. In this study, the primary driving factors for richness and diversity indices were tested. The possible ecological processes represented by each index were analyzed. First, the type of ecological process that governed the phytoplankton community in the Yunnan–Guizhou Plateau lakes, either deterministic or stochastic, was identified by Caswell's neutral model. The results indicate that a deterministic process governs the phytoplankton community. Second, the driving factors of richness and diversity indices were screened with mixed models. The results suggest that the variation of phytoplankton richness in different lakes or sites was primarily related to bottom-up factors. The variations in evenness and other measures based on the relative abundance were driven by both top-down and bottom-up factors, such as zooplankton biomass, and pH and mean light, respectively. Finally, although the different measures of diversity may respond to specific bottom-up or top-down processes, the responses to the two processes were not independent of each other. These findings will increase our understanding of the relationships between ecological processes and diversity measures for freshwater phytoplankton.  相似文献   

12.
Biodiversity has been established as a potential determinant of function in many ecosystems; however, previous research has mostly focused on primary producers and effects at a single trophic level. A broader perspective that considers multiple components of food webs is necessary to understand natural systems. In particular, consumer diversity needs to be more thoroughly examined as trophic interactions and indirect effects can alter ecosystem properties. We test the potential for consumer diversity (fish richness and composition) to govern food web dynamics at two levels of environmental complexity (mesocosms and experimental ponds) and explore the consequences of removing individual species of fish on lower trophic levels. In mesocosms, both the richness and density of zooplankton were reduced when more fish species were present. No effects from the fish treatments were found on phytoplankton, but phosphorus levels increased with higher fish richness. Removing either generalist or specialist fish species increased the richness and density of zooplankton and the amount of phytoplankton, whereas all fish species had redundant effects on nutrients. In ponds, a dominant fish species (specialist shiner) determined the richness and density of zooplankton. In contrast, phytoplankton and nutrients were reduced by higher fish richness in the fall and spring. Overall, the specialist shiner had unique effects on the pond food web suggesting the key to understanding function is the presence of a dominant species and their biological interactions. Differences between mesocosms and ponds are likely due to increased heterogeneity of resources in the ponds allowing species to specialize on different prey. Our study links the biodiversity ecosystem function paradigm with food web concepts to improve predictions for conservation and management actions in response to changes in biodiversity.  相似文献   

13.
高寒草地植物物种多样性与功能多样性的关系   总被引:5,自引:0,他引:5  
物种多样性与功能多样性的关系是生态学当前研究的热点问题之一,不同区域典型生态系统物种多样性和功能多样性的关系研究有利于生物多样性保护理论的全面发展。以青藏高原地区的主要草地生态系统—高寒草甸和高寒草原为研究对象,采用4个物种多样性指数(Patrick丰富度指数、Shannon-Weiner多样性指数、Pielou均匀度指数和Simpson优势度指数)和9个功能多样性指数(FAD功能性状距离指数、MFAD功能性状平均距离指数、基于样地的FDp和基于群落的FDc功能树状图指数、FRic功能体积指数、FEve功能均匀度指数、Rao功能离散度常二次熵指数、FDiv功能离散指数、FDis功能分散指数),分析了高寒草地植物物种多样性、功能多样性关系及其与初级生产力的关系,以期阐明3个科学问题:不同草地类型的高寒草地生态系统植物物种多样性和功能多样性有何差异?高寒草地生态系统的植物物种多样性和功能多样性有何关系?高寒草地生态系统物种多样性、功能多样性对生态系统功能的影响有何异同?研究结果表明:(1)与高寒草原相比,高寒草甸具有更高的物种多样性、功能丰富度和功能离散度;(2)高寒草甸中,Patrick丰富度与功能丰富度指数(FAD、MFAD、FDp、FDc)和功能离散度指数(FDiv)的具有较强的相关性,最优拟合方程分别为幂函数和二次多项式函数;(3)高寒草原中,Patrick丰富度与功能丰富度指数(FAD、MFAD、FDp、FDc、FRic)、Shannon指数和Simpson指数与FEve指数的相关性较强,最优拟合方程为二次多项式函数,Pielou指数与FEve指数的相关性较强,最优拟合方程为指数函数;(4)高寒草甸的初级生产力分别与物种丰富度指数Patrick、功能离散指数FDiv具有较强的相关性;而高寒草原的初级生产力与4个物种多样性指数间均具有较强的相关性,与功能离散指数FDiv具有较强的相关性,最佳拟合方程均为二次多项式函数。研究的总体结论为:物种多样性、功能多样性、二者之间的关系以及二者与生态系统服务功能(以初级生产力为例)之间的关系在高寒草甸和高寒草原群落中表现迥异,因此在研究青藏高原高寒草地的生态功能时,不能仅仅测度传统的物种多样性,还应测度与物种多样性、生态功能密切相关的功能多样性。  相似文献   

14.
The relationship between species diversity and the stability and production of trophic levels continues to receive intense scientific interest. Though facilitation is commonly cited as an essential underlying mechanism, few studies have provided evidence of the impact that indirect facilitation may have on diversity–ecosystem functioning relationships. In this laboratory study, we examined the effect of zooplankton species diversity on trophic structure (total algal and zooplankton biomass) and temporal stability of total zooplankton biomass. We utilized four species of pond zooplankton grown in either monoculture or in polyculture. When comparing responses in polycultures with responses averaged across monocultures, a positive effect of diversity on total zooplankton biomass was observed. This occurred as a result of positive facilitative effects among competing zooplankton. Daphnia pulex , a biomass dominant in monoculture, was negatively affected by the presence of interspecific competitors. In contrast, Diaphanosoma brachyurum , a species that performed poorly in monoculture, was strongly and positively affected by the presence of interspecific competitors, driving positive diversity effects on total zooplankton biomass. Positive temporal covariances among zooplankton were detected in several polyculture replicates, increasing temporal variability of total zooplankton biomass. However, this destabilizing effect was weak relative to effects of high biomass yields in polyculture which caused temporal biomass variability (as measured by the coefficient of variation) to be lower in polyculture relative to monocultures. Zooplankton diversity effects on total algal biomass were not detected. However, increased zooplankton diversity significantly altered the size structure of algae, increasing the relative abundance of large, grazer-resistant algae.  相似文献   

15.
Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.  相似文献   

16.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

17.
Covariation in species richness and community structure across taxonomical groups (cross‐taxon congruence) has practical consequences for the identification of biodiversity surrogates and proxies, as well as theoretical ramifications for understanding the mechanisms maintaining and sustaining biodiversity. We found there to exist a high cross‐taxon congruence between phytoplankton, zooplankton, and fish in 73 large Scandinavian lakes across a 750 km longitudinal transect. The fraction of the total diversity variation explained by local environment alone was small for all trophic levels while a substantial fraction could be explained by spatial gradient variables. Almost half of the explained variation could not be resolved between local and spatial factors, possibly due to confounding issues between longitude and landscape productivity. There is strong consensus that the longitudinal gradient found in the regional fish community results from postglacial dispersal limitations, while there is much less evidence for the species richness and community structure gradients at lower trophic levels being directly affected by dispersal limitation over the same time scale. We found strong support for bidirectional interactions between fish and zooplankton species richness, while corresponding interactions between phytoplankton and zooplankton richness were much weaker. Both the weakening of the linkage at lower trophic levels and the bidirectional nature of the interaction indicates that the underlying mechanism must be qualitatively different from a trophic cascade.  相似文献   

18.
The importance of top-down effects of piscivorous fish on phytoplankton in natural oligotrophic lakes is still debated. In this study, we analyzed patterns in phytoplankton and zooplankton abundance in 37 oligotrophic Canadian Shield lakes in relation to variations in both piscivorous fish predation and resources (total phosphorus; TP). Zooplankton community structure (but not total biomass) was partially affected by the variation in fish predation while the phytoplankton community structure and total biomass showed no response. Carbon isotope analyses revealed that the lack of top-down effects is due to the uncoupling of the littoral and the pelagic food webs. We found that the fish community depends mostly on benthic resources, suggesting that only low planktivory occurred in our study lakes. Due to the absence of specialized zooplanktivorous fish, zooplankton is poorly exploited in these lakes and thus able to control phytoplankton by grazing. A comparison of our data with published studies on the TP–chlorophyll a relationships in both natural and manipulated systems shows that the phytoplankton biomass per unit of TP is relatively low in Canadian Shield lakes.  相似文献   

19.
Disentangling the mechanisms that maintain the stability of communities and ecosystem properties has become a major research focus in ecology in the face of anthropogenic environmental change. Dispersal plays a pivotal role in maintaining diversity in spatially subdivided communities, but only a few experiments have simultaneously investigated how dispersal and environmental fluctuation affect community dynamics and ecosystem stability. We performed an experimental study using marine phytoplankton species as model organisms to test these mechanisms in a metacommunity context. We established three levels of dispersal and exposed the phytoplankton to fluctuating light levels, where fluctuations were either spatially asynchronous or synchronous across patches of the metacommunity. Dispersal had no effect on diversity and ecosystem function (biomass), while light fluctuations affected both evenness and community biomass. The temporal variability of community biomass was reduced by fluctuating light and temporal beta diversity was influenced interactively by dispersal and fluctuation, whereas spatial variability in community biomass and beta diversity were barely affected by treatments. Along the establishing gradient of species richness and dominance, community biomass increased but temporal variability of biomass decreased, thus highest stability was associated with species-rich but highly uneven communities and less influenced by compensatory dynamics. In conclusion, both specific traits (dominance) and diversity (richness) affected the stability of metacommunities under fluctuating conditions.  相似文献   

20.
Biodiversity-ecosystem function experiments test how species diversity influences fundamental ecosystem processes. Historically, arthropod driven functions, such as herbivory and pest-control, have been thought to be influenced by direct and indirect associations among species. Although a number of studies have evaluated how plant diversity affects arthropod communities and arthropod-mediated ecosystem processes, it remains unclear whether diversity effects on arthropods are sufficiently consistent over time such that observed responses can be adequately predicted by classical hypotheses based on associational effects. By combining existing results from a long-term grassland biodiversity experiment (Jena Experiment) with new analyses, we evaluate the consistency of consumer responses within and across taxonomic, trophic, and trait-based (i.e. vertical stratification) groupings, and we consider which changes in arthropod community composition are associated with changes in consumer-mediated ecosystem functions.Overall, higher plant species richness supported more diverse and complex arthropod communities and this pattern was consistent across multiple years. Vegetation-associated arthropods responded more strongly to changes in plant species richness than ground-dwelling arthropods. Additionally, increases in plant species richness were associated with shifts in the species-abundance distributions for many, but not all taxa. For example, highly specialized consumers showed a decrease in dominance and an increase in the number of rare species with increasing plant species richness. Most ecosystem processes investigated responded to increases in plant species richness in the same way as the trophic group mediating the process, e.g. both herbivory and herbivore diversity increase with increasing plant species richness. In the Jena Experiment and other studies, inconsistencies between predictions based on classic hypotheses of associational effects and observed relationships between plant species richness and arthropod diversity likely reflect the influence of multi-trophic community dynamics and species functional trait distributions. Future research should focus on testing a broader array of mechanisms to unravel the biological processes underlying the biodiversity-ecosystem functioning relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号