首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ColE2 DNA can be replicated in an in vitro system consisting of a crude extract of Escherichia coli cells. DNA synthesis requires a plasmid-coded protein (Rep) and host DNA polymerase I but not host RNA polymerase. Replication starts at a fixed region containing the origin and proceeds unidirectionally. The leading- and lagging-strand DNA fragments synthesized around the origin were identified from early replicative intermediates. The 5' end of the leading-strand DNA fragment was mapped at a unique position in the minimal origin and carried RNA of a few residues. The results suggested that the initiation of the leading-strand DNA synthesis does not require the host DnaG protein. Thus the Rep protein itself seems to be a primase. Synthesis of the primer RNA at a fixed site in the origin region on a double-stranded DNA template is a unique property of the ColE2 Rep protein among other known primases. The 3' end of the lagging-strand DNA fragment was mapped at a unique position just at the end of the minimal origin region. Termination of the lagging-strand DNA fragment at that position seems to be the mechanism of the unidirectional replication of ColE2 plasmid.  相似文献   

3.
A small cryptic plasmid designated pPB1 was isolated from Lactobacillus plantarum BIFI-38 and its complete 2899 bp nucleotide sequence was determined. Sequence analysis revealed four putative open reading frames. Based on sequence analysis two modules could be identified. First, the replication module consisted of a sequence coding for a replication protein (RepB) and its corresponding target site, and two putative repressor proteins (RepA and RepC). Sequence analysis indicated the possible synthesis of an antisense RNA that might regulate RepB production. A putative lagging-strand initiation site was also found, suggesting that pPB1 replicates via a rolling circle mechanism. The second module of pPB1 consisted of a sequence coding for a putative mobilization protein and its corresponding oriT site. Since the nucleotide sequence of the replication module showed 94.5% identity to the similar region on the Leuconostoc lactis plasmid pCI411, and the nucleotide sequence of the mobilization module had 97.5% identity to L. plantarum plasmid pLB4, it is concluded that pPB1 originated by modular exchange between two such plasmids by homologous recombination. Putative recombination sites where crossover might have taken place were also identified.  相似文献   

4.
5.
Summary The complete nucleotide sequences of the 1.5 kb regions of ColE2 and ColE3 plasmids containing the segments sufficient for autonomous replication have been determined. They are quite homologous (greater than 90%), indicating that these two plasmids share common mechanisms of initiation of replication and its regulation. An open reading frame with a coding capacity for a protein of about 300 amino acids is present in both ColE2 and ColE3 and it actually specifies the Rep (for replication) protein, which is the plasmid specific trans-acting factor required for autonomous replication. The amino acid sequences of the Rep proteins of ColE2 and ColE3 are quite homologous (greater than 90%). The cis-acting sites (origins) where replication initiates in the presence of the trans-acting factors consist of 32 bp for ColE2 and 33 bp for ColE3. They are the smallest of all the prokaryotic replication origins so far reported. They are nonhomologous only at two positions, one of which, a deletion of a single nucleotide in ColE2 (or an insertion in ColE3), determines the plasmid specificity in interaction of the origins with the Rep proteins. Both plasmids carry a region with an identical nucleotide sequence and the one in ColE2, the IncA region, has been shown to express incompatibility against both ColE2 and ColE3. These results indicate that these plasmids share a common IncA determinant. A possibility that a small antisense RNA is involved in copy number control and incompatibility (IncA function) was suggested.  相似文献   

6.
S Takechi  H Matsui    T Itoh 《The EMBO journal》1995,14(20):5141-5147
Initiation of in vitro ColE2 DNA replication requires the plasmid-specified Rep protein and DNA polymerase I but not RNA polymerase and DnaG primase. The ColE2 Rep protein binds specifically to the origin where replication initiates. Leading-strand synthesis initiates at a unique site in the origin and lagging-strand DNA synthesis terminates at another unique site in the origin. Here we show that the primer RNA for leading-strand synthesis at the origin has a unique structure of 5'-ppApGpA. We reconstituted the initiation reaction of leading-strand DNA synthesis by using purified proteins, the ColE2 Rep protein, Escherichia coli DNA polymerase I and SSB, and we showed that the ColE2 Rep protein is a priming enzyme, primase, which is specific for the ColE2 origin. The ColE2 Rep protein is unique among other primases in that it recognizes the origin region and synthesizes the primer RNA at a fixed site in the origin region. Specific requirement for ADP as a substrate and its direct incorporation into the 5' end of the primer RNA are also unique properties of the ColE2 Rep protein.  相似文献   

7.
8.
The origin of viral strand replication of the filamentous bacteriophage Pf3 has been characterized in Escherichia coli by in vitro deletion mapping techniques. The origin region was functionally identified by its ability to convey replicative properties to a recombinant plasmid in a polA host in which the replication origin of the vector plasmid is not functional. The origin of Pf3 viral strand replication is contained within a DNA sequence of 139 bp. This sequence covers almost completely one of the intergenic regions of the Pf3 genome, and it specifies both replication initiation and termination functions. Although no nucleotide sequence homology is present between the Pf3 origin of viral strand replication and that of the E. coli filamentous phages Ff (M13, f1, and fd) and IKe, their map positions and functional properties are very similar.  相似文献   

9.
The inhibition of plasmid ColE1 replication caused by a deletion of the ColE1 plasmid replication origin has been previously reported (T. Hashimoto-Gotoh and J. Inselburg, J. Bacteriol. 139:597-619). Evidence is presented showing that restoration of the deleted nucleotide sequence in the precise relationship it normally has to the rest of the replication region is essential for restoration of ColE1 replication capability to the deletion mutant.  相似文献   

10.
11.
The streptococcal plasmid pMV158 replicates by the rolling-circle mechanism. One feature of this replication mechanism is the generation of single-stranded DNA intermediates which are converted to double-stranded molecules. Lagging-strand synthesis initiates from the plasmid single-stranded origin, sso. We have used the pMV158-derivative plasmid pLS1 (containing the ssoA type of lagging-strand origin) and a set of pLS1 derivatives with mutations in two conserved regions of the ssoA (the recombination site B [RSB] and a conserved 6-nucleotide sequence [CS-6]) to identify sequences important for plasmid lagging-strand replication in Streptococcus pneumoniae. Cells containing plasmids with mutations in the RSB accumulated 30-fold more single-stranded DNA than cells containing plasmids with mutations in the CS-6 sequence. Specificity of lagging-strand synthesis was tested by the development of a new in vitro replication system with pneumococcal cell extracts. Four major initiation sites of lagging-strand DNA synthesis were observed. The specificity of initiation was maintained in plasmids with mutations in the CS-6 region. Mutations in the RSB region, on the other hand, resulted in the loss of specific initiation of lagging-strand synthesis and also severely reduced the efficiency of replication.  相似文献   

12.
13.
14.
15.
Summary We have identified and localized two incompatibility determinants (IncA and IncB) within a 1.3 kb segment of ColE2 sufficient for autonomous replication. The IncA determinant is localized in a region shorter than 250 bp and expresses incompatibility against both ColE2 and ColE3. The region which determines sensitivity to the IncA determinant seems to overlap with the region specifying the IncA determinant. The expression of the trans-acting factor(s) specifically required for replication of ColE2 interferes with expression of the IncA determinant against ColE2 but not against ColE3. The IncA determinant might be at least partly responsible for the copy number control of the plasmid. The IncB determinant is localized in a 50 bp region (origin) which is sufficient for initiation of replication in the presence of the trans-acting factor(s). The IncB determinant is specific for ColE2 and seems to be due to titration of the trans-acting essential replication factor(s) by binding.  相似文献   

16.
17.
18.
The nucleotide sequence of a smallest cryptic plasmid pRK10 of Serratia marcescens ACE2 was determined. When compared to the all other plasmids reported so far from S. marcescens in sizes of over 70 kb, pRK10 is only 4241 bp long with 53% G + C content and has five coding sequences representing a coding percentage of 65.41. This small plasmid consists of one Tdh gene, four mobilization genes, mobCABD, and an origin of replication homologous to those of ColE1-type plasmids. Analysis of the five open reading frames identified on the plasmid suggests the presence of genes involved in replication and mobilization containing sequences homologous to the bom region and mobCABD genes of ColE1 and Tdh from Acinetobacter baumannii str. AYE. Results also indicate that pRK10 does not encode any gene for antibiotic/heavy metal resistance. Copy number and incompatibility of the plasmid with plasmids of ColE1 origin of replication was determined and it is quite stable in its natural host as well as in Escherichia coli DH5α. This relatively small plasmid will be useful for construction of shuttle vectors to facilitate the genetic analysis.  相似文献   

19.
The initiation stage of ColE1-type plasmid replication was reconstituted with purified protein fractions from Escherichia coli. The reconstituted system included DNA polymerase I, DNA ligase, RNA polymerase, DNA gyrase, and a discriminating activity copurifying with RNAase H (but free of RNAase III). Initiation of DNA synthesis in the absence of RNAase H did not occur at the normal replication origin and was non-selective with respect to the plasmid template. In the presence of RNAase H the system was selective for ColE1-type plasmids and could not accept the DNA of non-amplifiable plasmids. Electron microscopic analysis of the reaction product formed under discriminatory conditions indicated that origin usage and directionally of ColE1, RSF1030, and CloDF13 replication were consistent with the normal replication pattern of these plasmids. It is proposed that the initiation of ColE1-type replication depends on the formation of an extensive secondary structure in the origin primer RNA that prevents its degradation by RNAase H.  相似文献   

20.
The plasmid ColE2-P9 origin is a 32-bp region which is specifically recognized by the plasmid-specified Rep protein to initiate DNA replication. We analyzed the structural and functional organization of the ColE2 origin by using various derivatives carrying deletions and single-base-pair substitutions. The origin may be divided into three subregions: subregion I, which is important for stable binding of the Rep protein; subregion II, which is important for binding of the Rep protein and for initiation of DNA replication; and subregion III, which is important for DNA replication but apparently not for binding of the Rep protein. The Rep protein might recognize three specific DNA elements in subregions I and II. The relative transformation frequency of the autonomously replicating plasmids carrying deletions in subregion I is lower, and nevertheless the copy numbers of these plasmids in host bacteria are higher than those of the wild-type plasmid. Efficient and stable binding of the Rep protein to the origin might be important for the replication efficiency to be at the normal (low) level. Subregion II might be essential for interaction with the catalytic domain of the Rep protein for primer RNA synthesis. The 8-bp sequence across the border of subregions II and III, including the primer sequence, is conserved in the (putative) origins of many plasmids, the putative Rep proteins of which are related to the ColE2-P9 Rep protein. Subregion III might be required for a step that is necessary after Rep protein binding has taken place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号