首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We describe in this study a strategy to produce synthetic vaccines based on a single polypeptide capable of eliciting strong immune responses to a combination CTL and Th epitopes with the purpose of treating malignancies or preventing infectious diseases. This strategy is based on the capacity of Trojan Ags to deliver exogenous Ags into the intracellular compartments, where processing into MHC-binding peptides takes place. Our previous work demonstrated that Trojan Ags containing a CTL epitope localized to intracellular compartments, where MHC class I-binding peptides were generated in a TAP-independent fashion by the action of various exopeptidases and the endopeptidase furin. In this study, we report that Trojan Ags containing several CTL epitopes joined via furin-sensitive linkers generated all of the corresponding MHC class I-binding peptides, which were recognized by CTL. However, Trojan Ags prepared with furin-resistant linkers failed to produce the MHC class I-binding peptides. We also present data indicating that Trojan Ags bearing both CTL and Th epitopes can generate the corresponding MHC class I- and II-binding peptides, which are capable of stimulating T cell responses. Most significantly, in vivo vaccination of mice with a single injection of multiepitope Trojan Ags resulted in strong CTL and Th responses that translated into significant antitumor responses in a model of malignant melanoma. The overall results indicate that Trojan Ags prepared with furin-sensitive linkers are ideal candidates for producing synthetic multiepitope vaccines for the induction of CTL and Th responses that could be used against a variety of diseases, including cancer.  相似文献   

2.
The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant.  相似文献   

3.
The product of Wilms‘ tumor gene 1 (WT1) is overexpressed in diverse human tumors, including leukemia, lung and breast cancer, and is often recognized by antibodies in the sera of patients with leukemia. Since WT1 encodes MHC class I-restricted peptides recognized by cytotoxic T lymphocytes (CTL), WT1 has been considered as a promising tumor-associated antigen (TAA) for developing anticancer immunotherapy. In order to carry out an effective peptide-based cancer immunotherapy, MHC class II-restricted epitope peptides that elicit anti-tumor CD4+ helper T lymphocytes (HTL) will be needed. In this study, we analyzed HTL responses against WT1 antigen using HTL lines elicited by in vitro immunization of human lymphocytes with synthetic peptides predicted to serve as HTL epitopes derived from the sequence of WT1. Two peptides, WT1124–138 and WT1247–261, were shown to induce peptide-specific HTL, which were restricted by frequently expressed HLA class II alleles. Here, we also demonstrate that both peptides-reactive HTL lines were capable of recognizing naturally processed antigens presented by dendritic cells pulsed with tumor lysates or directly by WT1+ tumor cells that express MHC class II molecules. Interestingly, the two WT1 HTL epitopes described here are closely situated to known MHC class I-restricted CTL epitopes, raising the possibility of stimulating CTL and HTL responses using a relatively small synthetic peptide vaccine. Because HTL responses to TAA are known to be important for promoting long-lasting anti-tumor CTL responses, the newly described WT1 T-helper epitopes could provide a useful tool for designing powerful vaccines against WT1-expressing tumors.  相似文献   

4.
Avipoxvirus-based vectors, such as recombinant canarypox virus ALVAC, are studied extensively as delivery vehicles for vaccines against cancer and infectious diseases. Effective use of such vaccines is expected to benefit from proper understanding of the interaction between these viral vectors and the host immune system. We performed preclinical vaccination experiments in a murine tumor model to analyze the immunogenic properties of an ALVAC-based vaccine against carcinoembryonic Ag (ALVAC-CEA), a tumor-associated autoantigen commonly overexpressed in colorectal cancers. The protective CEA-specific immunity induced by this vaccine consisted of CD4(+) T cell responses with a mixed Th1/Th2 cytokine profile that were accompanied by potent humoral responses, but not by CEA-specific CD8(+) CTL immunity. In contrast, protective immunity induced by a CEA-specific DNA vaccine (DNA-CEA) consisted of Th1 and CTL responses. Modification of the ALVAC-CEA vaccine through coinjection of DNA-CEA, admixture with CpG oligodeoxynucleotides, or supplementation with additional transgenes encoding a triad of costimulatory molecules (TRICOM) did not result in induction of CEA-specific CTL responses. Even though these results suggested that ALVAC does not elicit Ag-specific CTLs, immunization with ALVAC vaccines against other Ags efficiently induced CTL responses. Our data show that the capacity of ALVAC vaccines to elicit CTL immunity against transgene-encoded Ags critically depends on the presence of highly immunogenic CTL epitopes in these Ags. This consideration needs to be taken into account with respect to the design and evaluation of vaccination strategies that use ALVAC-based vaccine.  相似文献   

5.
Vaccine strategies designed to elicit strong cell-mediated immune responses to HIV Ags are likely to lead to protective immunity against HIV infection. Dendritic cells (DC) are the most potent APCs capable of priming both MHC class I- and II-restricted, Ag-specific T cell responses. Utilizing a system in which cultured DC from HIV-seronegative donors were used as APC to present HIV-1 Ags to autologous T cells in vitro, the strength and specificity of primary HIV-specific CTL responses generated to exogenous HIV-1 Nef protein as well as intracellularly expressed nef transgene product were investigated. DC expressing the nef gene were able to stimulate Nef-specific CTL, with T cells from several donors recognizing more than one epitope restricted by a single HLA molecule. Primary Nef-specific CTL responses were also generated in vitro using DC pulsed with Nef protein. T cells primed with Nef-expressing DC (via protein or transgene) were able to lyse MHC class I-matched target cells pulsed with defined Nef epitope peptides as well as newly identified peptide epitopes. The addition of Th1-biasing cytokines IL-12 or IFN-alpha, during priming with Nef-expressing DC, enhanced the Nef-specific CTL responses generated using either Ag-loading approach. These results suggest that this in vitro vaccine model may be useful in identifying immunogenic epitopes as vaccine targets and in evaluating the effects of cytokines and other adjuvants on Ag-specific T cell induction. Successful approaches may provide information important to the development of prophylactic HIV vaccines and are envisioned to be readily translated into clinical DC-based therapeutic vaccines for HIV-1.  相似文献   

6.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

7.
Presentation of MHC class I-restricted peptides by dendritic cells (DCs) can elicit vigorous antigen-specific CTL responses in vivo. It is well established, however, that T cell help can augment CTL function, raising the question of how best to present tumor-associated MHC class I epitopes to induce effective tumor immunity. To this end, we have examined the role of MHC class II peptide-complexes present on the immunizing DCs in a murine melanoma model. To present MHC class I- and II-restricted Ags reliably on the same cell, we retrovirally transduced bone marrow-derived DCs with the model Ag OVA encoding well-defined class I- and II-restricted epitopes. The importance of CD4+ T cells activated by the immunizing DCs in this model is demonstrated by the following findings: 1) transduced DCs presenting class I and class II epitopes are more efficient than class I peptide-pulsed DCs; 2) MHC class II-deficient DCs fail to induce tumor protection; 3) CD4+ T cell depletion abolishes induction of tumor protection; and 4) DCs presenting bovine serum Ags are more effective in establishing tumor immunity than DCs cultured in syngeneic serum. When MHC class II-deficient DCs were directly activated via their CD40 receptor, we indeed observed a moderate elevation of OVA-specific CTL activity. However, this increase in CTL activity was not sufficient to induce in vivo tumor rejection. Thus, our results demonstrate the potency of genetically modified DCs that express both MHC class I and II epitopes, but caution against the use of DCs presenting only the former.  相似文献   

8.
Forty-two wild-type and analogue peptides derived from p53, carcinoembryonic Ag, Her2/neu, and MAGE2/3 were screened for their capacity to induce CTLs, in vitro, capable of recognizing tumor target lines. All the peptides bound HLA-A*0201 and two or more additional A2 supertype alleles with an IC(50) of 500 nM or less. A total of 20 of 22 wild-type and 9 of 12 single amino acid substitution analogues were found to be immunogenic in primary in vitro CTL induction assays, using normal PBMCs and GM-CSF/IL-4-induced dendritic cells. These results suggest that peripheral T cell tolerance does not prevent, in this system, induction of CTL responses against tumor-associated Ag peptides, and confirm that an HLA class I affinity of 500 nM or less is associated with CTL epitope immunogenicity. CTLs generated by 13 of 20 of the wild-type epitopes, 6 of 9 of the single, and 2 of 5 of the double substitution analogues tested recognized epitopes generated by endogenous processing of tumor-associated Ags and expressed by HLA-matched cancer cell lines. Further analysis revealed that recognition of naturally processed Ag was correlated with high HLA-A2.1-binding affinity (IC(50) = 200 nM or less; p = 0.008), suggesting that high binding affinity epitopes are frequently generated and can be recognized as a result of natural Ag processing. These results have implications for the development of cancer vaccines, in particular, and for the process of epitope selection in general.  相似文献   

9.
Linear peptides (SynB vectors) with specific sequence motifs have been identified that are capable of enhancing the transport of a wide range of molecules into cells. These peptide vectors have been used to deliver exogenous peptides and protein Ags across the cell membrane and into the cytoplasm of cells. Specifically, in vitro analysis indicated that these SynB peptides enhanced the uptake of two 9-mer peptide Ags, NP(147-155) and Mtb(250-258) (T cell epitopes of influenza nucleoprotein and Mycobacterium tuberculosis, respectively) and the M. tuberculosis Ag Mtb8.4 protein, into K562 cells when covalently linked to the respective Ags. Furthermore, selected SynB vectors, when conjugated to these same Ags and used as immunogens, resulted in considerably enhanced Ag-specific CTL responses. Several SynB vectors were tested and resulted in varying levels of cellular uptake. The efficiency of uptake correlated with the ability of the SynB construct to deliver each epitope in vivo and induce specific CTL responses in mice. These data suggest that peptide vectors, such as SynB that transport target Ags across the cell membrane in a highly efficient manner, have significant potential for vaccine delivery.  相似文献   

10.
Survivin is a tumor-associated antigen (TAA) that has significant potential for use as a cancer vaccine target. To identify survivin epitopes that might serve as targets for CTL-mediated, anti-tumor responses, we evaluated a series of survivin peptides with predicted binding to mouse H2-Kb and human HLA-A*0201 antigens in peptide-loaded dendritic cell (DC) vaccines. H2-Kb-positive, C57BL/6 mice were vaccinated using syngeneic, peptide-loaded DC2.4 cells. Splenocytes from vaccinated mice were screened by flow cytometry for binding of dimeric H2-Kb:Ig to peptide-specific CD8+ T cells. Two survivin peptides (SVN57–64 and SVN82–89) generated specific CD8+ T cells. We chose to focus on the SVN57–64 peptide because that region of the molecule is 100% homologous to human survivin. A larger peptide (SVN53–67), containing multiple class I epitopes, and a potential class II ligand, was able to elicit both CD8+ CTL and CD4+ T cell help. We tested the SVN53–67 15-mer peptide in a therapeutic model using a peptide-loaded DC vaccine in C57BL/6 mice with survivin-expressing GL261 cerebral gliomas. This vaccine produced significant CTL responses and helper T cell-associated cytokine production, resulting in a significant prolongation of survival. The SVN53–67 vaccine was significantly more effective than the SVN57–64 core epitope as a cancer vaccine, emphasizing the potential benefit of incorporating multiple class I epitopes and associated cytokine support within a single peptide.  相似文献   

11.
Transfection of dendritic cells (DC) with tumor-derived RNA has recently been shown to elicit tumor-specific CTL capable of recognizing and lysing a variety of tumor cells. In our study we analyzed the induction of HLA class I- and II-restricted T cell responses against MCF-7 breast cancer cells. Using this approach we were able to elicit CD4- and CD8-mediated antitumor responses. The CTL specifically lysed MCF-7 cells and DC electroporated with MCF-7 RNA, but spared control cell lines. The specificity of the cytotoxic activity was confirmed in cold target inhibition assays and using mAbs blocking HLA class I molecules. Interestingly, these polyclonal cytotoxic T cells recognized selectively two epitopes derived from the MUC1 and Her-2/neu tumor Ags. The induced Th cells were found to be entirely HLA class II restricted and showed a significant cross-reactivity to a renal cell carcinoma cell line, similar to the results obtained with cytotoxic T cells.  相似文献   

12.
To investigate the ability of human dendritic cells (DC) to process and present multiple epitopes from the gp100 melanoma tumor-associated Ags (TAA), DC from melanoma patients expressing HLA-A2 and HLA-A3 were pulsed with gp100-derived peptides G9154, G9209, or G9280 or were infected with a vaccinia vector (Vac-Pmel/gp100) containing the gene for gp100 and used to elicit CTL from autologous PBL. CTL were also generated after stimulation of PBL with autologous tumor. CTL induced with autologous tumor stimulation demonstrated HLA-A2-restricted, gp100-specific lysis of autologous and allogeneic tumors and no lysis of HLA-A3-expressing, gp100+ target cells. CTL generated by G9154, G9209, or G9280 peptide-pulsed, DC-lysed, HLA-A2-matched EBV transformed B cells pulsed with the corresponding peptide. CTL generated by Vac-Pmel/gp100-infected DC (DC/Pmel) lysed HLA-A2- or HLA-A3-matched B cell lines pulsed with the HLA-A2-restricted G9154, G9209, or G9280 or with the HLA-A3-restricted G917 peptide derived from gp100. Furthermore, these DC/Pmel-induced CTL demonstrated potent cytotoxicity against allogeneic HLA-A2- or HLA-A3-matched gp100+ melanoma cells and autologous tumor. We conclude that DC-expressing TAA present multiple gp100 epitopes in the context of multiple HLA class I-restricting alleles and elicit CTL that recognize multiple gp100-derived peptides in the context of multiple HLA class I alleles. The data suggest that for tumor immunotherapy, genetically modified DC that express an entire TAA may present the full array of possible CTL epitopes in the context of all possible HLA alleles and may be superior to DC pulsed with limited numbers of defined peptides.  相似文献   

13.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

14.
MHC class I-restricted T cell epitopes lack immunogenicity unless aided by IFA or CFA. In an attempt to circumvent the known inflammatory side effects of IFA and CFA, we analyzed the ability of immunostimulatory CpG-DNA to act as an adjuvant for MHC class I-restricted peptide epitopes. Using the immunodominant CD8 T cell epitopes, SIINFEKL from OVA or KAVYNFATM (gp33) from lymphocytic choriomeningitis virus glycoprotein, we observed that CpG-DNA conveyed immunogenicity to these epitopes leading to primary induction of peptide-specific CTL. Furthermore, vaccination with the lymphocytic choriomeningitis virus gp33 peptide triggered not only CTL but also protective antiviral defense. We also showed that MHC class I-restricted peptides are constitutively presented by immature dendritic cells (DC) within the draining lymph nodes but failed to induce CTL responses. The use of CpG-DNA as an adjuvant, however, initiated peptide presenting immature DC progression to professional licensed APC. Activated DC induced cytolytic CD8 T cells in wild-type mice and also mice deficient of Th cells or CD40 ligand. CpG-DNA thus incites CTL responses toward MHC class I-restricted T cell epitopes in a Th cell-independent manner. Overall, these results provide new insights into CpG-DNA-mediated adjuvanticity and may influence future vaccination strategies for infectious and perhaps tumor diseases.  相似文献   

15.
Infections can influence concurrent and subsequent Th1 vs Th2 immune responses to Ags. Through pattern recognition of foreign unmethylated CpG dinucleotides, the vertebrate innate immune system can sense infectious danger and typically replies with a Th1-polarized adaptive immune response. We examined whether CpG-DNA exposure would influence subsequent responses to infection and soluble Ags. CpG-DNA injection led to local lymphadenopathy characterized by maintenance of cellular composition with some biasing toward elevated dendritic cell composition. Sustained local production of IL-12 and IFN-gamma from dendritic cells and T cells was shown. Prior injection by up to 2 wk with CpG-DNA protected BALB/c mice from Th2 driven lethal leishmaniasis. CpG-DNA injection by up to 5 wk before soluble Ag challenge resulted in the generation of Ag-specific CTL, Th1 recall responses to Ag, and Th1-polarized Ag-specific Abs. Thus, CpG-DNA instigated a local predisposition for intense CTL responses and Th1-polarized immune responses to subsequent infections or Ag challenge. The induction by the innate immune system of a locally contained hypersensitivity could represent a capacitating immune reaction yielding rapid conditioned responses to secondary infections.  相似文献   

16.
Antigen-specific T-helper (Th) lymphocytes are critical for the development of antiviral humoral responses and the expansion of cytotoxic T lymphocytes (CTL). Identification of relevant Th lymphocyte epitopes remains an important step in the development of an efficacious subunit peptide vaccine against equine infectious anemia virus (EIAV), a naturally occurring lentivirus of horses. This study describes Th lymphocyte reactivity in EIAV carrier horses to two proteins, p26 and p15, encoded by the relatively conserved EIAV gag gene. Using partially overlapping peptides, multideterminant and possibly promiscuous epitopes were identified within p26. One peptide was identified which reacted with peripheral blood mononuclear cells (PBMC) from all five EIAV-infected horses, and three other peptides were identified which reacted with PBMC from four of five EIAV-infected horses. Four additional peptides containing both CTL and Th lymphocyte epitopes were also identified. Multiple epitopes were recognized in a region corresponding to the major homology region of the human immunodeficiency virus, a region with significant sequence similarity to other lentiviruses including simian immunodeficiency virus, puma lentivirus, feline immunodeficiency virus, Jembrana disease virus, visna virus, and caprine arthritis encephalitis virus. PBMC reactivity to p15 peptides from EIAV carrier horses also occurred. Multiple p15 peptides were shown to be reactive, but not all infected horses had Th lymphocytes recognizing p15 epitopes. The identification of peptides reactive with PBMC from outbred horses, some of which encoded both CTL and Th lymphocyte epitopes, should contribute to the design of synthetic peptide or recombinant vector vaccines for EIAV.  相似文献   

17.
The identification of tumor-associated T cell epitopes has contributed significantly to the understanding of the interrelationship of tumor and immune system and is instrumental in the development of therapeutic vaccines for the treatment of cancer. Most of the known epitopes have been identified with prediction algorithms that compute the potential capacity of a peptide to bind to HLA class I molecules. However, naturally expressed T cell epitopes need not necessarily be strong HLA binders. To overcome this limitation of the available prediction algorithms we established a strategy for the identification of T cell epitopes that include suboptimal HLA binders. To this end, an artificial neural network was developed that predicts HLA-binding peptides in protein sequences by taking the entire sequence context into consideration rather than computing the sum of the contribution of the individual amino acids. Using this algorithm, we predicted seven HLA A*0201-restricted potential T cell epitopes from known melanoma-associated Ags that do not conform to the canonical anchor motif for this HLA molecule. All seven epitopes were validated as T cell epitopes and three as naturally processed by melanoma tumor cells. T cells for four of the new epitopes were found at elevated frequencies in the peripheral blood of melanoma patients. Modification of the peptides to the canonical sequence motifs led to improved HLA binding and to improved capacity to stimulate T cells.  相似文献   

18.
Anchor residue-modified peptides derived from tumor-associated Ag have demonstrated success in engendering immune responses in clinical studies. However, tumor regression does not always correlate with immune responses. One hypothesis to explain this is that CTL resulting from such immunization approaches are variable in antitumor potency. In the present study, we evaluated this hypothesis by characterizing the activity of tumor-associated Ag-specific CTL. We chose an anchor residue-modified peptide from gp100, G209-2M, and used peptide-pulsed dendritic cells to generate CTL from PBMC of HLA-A2(+) normal donors. The specificities and avidities of the resulting CTL were evaluated. The results demonstrate that CTL generated by G209-2M can be classified into three categories: G209-2M-specific CTL which are cytotoxic only to G209-2M-pulsed targets; peptide-specific CTL which recognize both G209 and G209-2M peptides but not melanomas; and melanoma-reactive CTL which recognize peptide-pulsed targets as well as HLA-A2(+)gp100(+) melanomas. CTL that kill only peptide-pulsed targets require a higher peptide concentration to mediate target lysis, whereas CTL that lyse melanomas need a lower peptide concentration. Increasing peptide density on melanomas by loading exogenous G209 peptide enhances their sensitivity to peptide-specific CTL. High avidity CTL clones also demonstrate potent antimelanoma activity in melanoma model in nude mice. Injection of G209 peptide around transplanted tumors significantly enhances the antitumor activity of low avidity CTL. These results suggest that peptide stimulation causes expansion of T cell populations with a range of avidities. Successful immunotherapy may require selective expansion of the higher-avidity CTL and intratumor injection of the peptide may enhance the effect of peptide vaccines.  相似文献   

19.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

20.
Most tumor-associated Ags are self proteins that fail to elicit a T cell response as a consequence of immune tolerance. Dendritic cells (DCs) generated ex vivo have been used to break tolerance against such self Ags; however, in vitro manipulation of DCs is cumbersome and difficult to control, resulting in vaccines of variable potency. To address this problem we developed a method for loading and activating DCs, in situ, by first directing sufficient numbers of DCs to peripheral tissues using Flt3 ligand and then delivering a tumor-associated Ag and oligonucleotide containing unmethylated CG motifs to these tissues. In this study, we show in three different tumor models that this method can overcome tolerance and induce effective antitumor immunity. Vaccination resulted in the generation of CD8(+) T and NK cell effectors that mediated durable tumor responses without attacking normal tissues. These findings demonstrate that unmodified tumor-associated self Ags can be targeted to DCs in vivo to induce potent systemic antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号