首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Wild-type p53 protein is known to regulate the global genomic repair (GGR), removing bulky chemical DNA adducts as well as cyclobutane pyrimidine dimers from the genome overall and from non-transcribed strands (NTS) in DNA. To investigate the role of cellular factor(s) relevant to p53 regulated DNA repair processes, we examined the repair kinetics of chemical carcinogen, anti-benzo[a]pyrene-diol epoxide (anti-BPDE), induced bulky DNA adducts in normal human mammary epithelial cells (HMECs) and HMEC transformed by human papillomavirus (HPV)-16E6 or -16E7 oncoproteins, which, respectively targets p53 or pRb proteins for degradation. The results show that the removal of anti-BPDE DNA adducts from the genome overall and NTS by GGR was significantly reduced in HPV-16E6 protein expressing cells as compared to that in normal and HPV-16E7 protein expressing cells, indicating the role of p53 and not pRb in nucleotide excision repair (NER). We further determined the potential effects of the p53-regulated p21(waf1/cip1) gene product in NER in human colon carcinoma, HCT116 cells expressing wild-type p53 but different p21(waf1/cip1) genotypes (p21+/+, p21+/-, p21-/-). The results donot show a discernible difference in the removal of anti-BPDE DNA adducts from the genome overall and the transcribed strand (TS) and NTS irrespective of the presence or absence of p21(waf1/cip1) expression. Based on these results, we suggest that: (i) the wild-type p53 function but not p21(waf1/cip1) expression is necessary for GGR of chemical induced bulky DNA adducts; (ii) the Rb gene product does not play a significant role in NER; and (iii) the modulation of NER by p53 may be independent of its function in the regulation of cell cycle arrest upon chemically induced DNA damage.  相似文献   

3.
UV or gamma irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin-dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21 function.  相似文献   

4.
UV or g irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21WAF1 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21WAF1 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21WAF1 function.  相似文献   

5.
Checkpoint kinase-1 (CHK1) is a key regulator of the DNA damage-elicited G2-M checkpoints. The aim of the present study was to investigate the effects of a selective CHK1 inhibitor, Chir124, on cell survival and cell cycle progression following ionizing radiation (IR). Treatment with Chir-124 resulted in reduced clonogenic survival and abrogated the IR- induced G2-M arrest in a panel of isogenic HCT116 cell lines after IR. This radiosensitizing effect was relatively similar between p53-/- and p53-sufficient wild type (WT) HCT116 cells. However, the number of mitotic cells (as measured by assessing the phosphorylation of mitotic proteins) increased dramatically in p53-/- HCT116 cells after concomitant Chir-124 exposure, compared to IR alone, while no such effect was observed in p53-sufficient WT HCT116 cells. In p53-/- cells, Chir-124 treatment induced a marked accumulation of polyploid cells that were characterized by micronucleation or multinucleation. p21-/- HCT116 cells displayed a similar pattern of response as p53-/- cells. Chir-124 was able to radiosensitize HCT116 cells that lack checkpoint kinase-2 (CHK2) or that were deficient for the spindle checkpoint protein Mad2. Finally, Chir-124 could radiosensitize tetraploid cell lines, which were relatively resistant against DNA damaging agents. Altogether these results suggest that Chir-124-mediated radiosensitization is profoundly influenced by the p53 and cell cycle checkpoint system.  相似文献   

6.
7.
8.
9.
Tang J  Chu G 《DNA Repair》2002,1(8):601-616
  相似文献   

10.
11.
12.
The tumor suppressor p53 is required for the maintenance of genomic integrity following DNA damage. One mechanism by which p53 functions is to induce a block in the transition between the G(1) and S phase of the cell cycle. Previous studies indicate that the Krüppel-like factor 4 (KLF4) gene is activated following DNA damage and that such activation depends on p53. In addition, enforced expression of KLF4 causes G(1)/S arrest. The present study examines the requirement of KLF4 in mediating the p53-dependent cell cycle arrest process in response to DNA damage. We show that the G(1) population of a colon cancer cell line, HCT116, that is null for the p53 alleles (-/-) was abolished following gamma irradiation compared with cells with wild-type p53 (+/+). Conditional expression of KLF4 in irradiated HCT116 p53-/- cells restored the G(1) cell population to a level similar to that seen in irradiated HCT116 p53+/+ cells. Conversely, treatment of HCT116 p53+/+ cells with small interfering RNA (siRNA) specific for KLF4 significantly reduced the number of cells in the G(1) phase following gamma irradiation compared with the untreated control or those treated with a nonspecific siRNA. In each case the increase or decrease in KLF4 level because of conditional induction or siRNA inhibition, respectively, was accompanied by an increase or decrease in the level of p21(WAF1/CIP1). Results of our study indicate that KLF4 is an essential mediator of p53 in controlling G(1)/S progression of the cell cycle following DNA damage.  相似文献   

13.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

14.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

15.
16.
17.
18.
Treatment of cells with the anti-cancer drug camptothecin (CPT) induces topoisomerase I (Top1)-mediated DNA damage, which in turn affects cell proliferation and survival. In this report, we demonstrate that treatment of the wild-type HCT116 (wt HCT116) human colon cancer cell line and the isogenic p53(-/-) HCT116 and p21(-/-) HCT116 cell lines with a high concentration (250 nm) of CPT resulted in apoptosis, indicating that apoptosis occurred by a p53- and p21-independent mechanism. In contrast, treatment with a low concentration (20 nm) of CPT induced cell cycle arrest and senescence of the wt HCT116 cells, but apoptosis of the p53(-/-) HCT116 and p21(-/-) HCT116 cells. Further investigations indicated that p53-dependent expression of p21 blocked apoptosis of wt HCT116 cells treated with 20 nm, but not 250 nm CPT. Interestingly, blocking of the apoptotic pathway, by Z-VAD-FMK, in p21(-/-) HCT116 cells following treatment with 20 nm CPT did not permit the cells to develop properties of senescence. These observations demonstrated that p21 was required for senescence development of HCT116 cells following treatment with low concentrations of CPT.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号