首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R C Pe?a  T D Murray  S S Jones 《Génome》1997,40(2):249-252
The gene Pch2 in 'Cappelle Desprez' is one of two genes found in hexaploid wheat known to confer resistance to eyespot disease. This study was conducted to develop an RFLP linkage map of the distal portion of wheat chromosome 7AL, and to locate and identify markers closely associated with Pch2 for use in marker-assisted selection. Ten loci in addition to Pch2 were mapped on chromosome 7AL, using segregation data from 102 homozygous chromosome 7A recombinant substitution lines derived from 'Chinese Spring' x 'Chinese Spring' ('Cappelle Desprez' 7A). The Pch2 locus was bracketed by two RFLP markers, one 11.0 cM distal to Xcdo347 and the other 18.8 cM proximal to Xwg380. The position of Pch2 on chromosome 7AL is similar to that of Pch1 on chromosome 7DL, suggesting that these resistance genes are homoeoloci. Although no single marker was closely linked to Pch2, simultaneous selection of the flanking RFLP markers Xcdo347 and Xwg380 could be used for selecting Pch2, since double recombination occurred in only 3% of the recombinant population. The use of the flanking RFLP markers to select for Pch2, in combination with previously identified Pch1-linked markers, would facilitate the development of cultivars carrying two genes for resistance to eyespot.  相似文献   

2.
Introgressions into wheat from related species have been widely used as a source of agronomically beneficial traits. One such example is the introduction of the potent eyespot resistance gene Pch1 from the wild relative Aegilops ventricosa onto chromosome 7DL of wheat. In common with genes carried on many other such introgressions, the use of Pch1 in commercial wheat varieties has been hindered by linkage drag with yield-limiting traits. Attempts to break this linkage have been frustrated by a lack of co-dominant PCR markers suitable for identifying heterozygotes in F2 populations. We developed conserved orthologous sequence (COS) markers, utilising the Brachypodium distachyon (Brachypodium) genome sequence, to provide co-dominant markers in the Pch1 region. These were supplemented with previously developed sequence-tagged site (STS) markers and simple sequence repeat (SSR) markers. Markers were applied to a panel of varieties and to a BC6 F2 population, segregating between wheat and Ae. ventricosa over the distal portion of 7DL, to identify recombinants in the region of Pch1. By exploiting co-linearity between wheat chromosome 7D, Brachypodium chromosome 1, rice chromosome 6 and sorghum chromosome 10, Pch1 was located to an interval between the flanking markers Xwg7S and Xcos7-9. Furthermore candidate gene regions were identified in Brachypodium (364 Kb), rice (178 Kb) and sorghum (315 Kb) as a prelude to the map-based cloning of the gene. In addition, using homoeologue transferable markers, we obtained evidence that the eyespot resistances Pch1 and Pch2 on chromosomes 7D and 7A, respectively, are potentially homoeoloci. It is anticipated that the COS marker methodology could be used for the identification of recombinants in other introgressions into wheat from wild relatives. This would assist the mapping of genes of interest and the breaking of deleterious linkages to enable greater use of these introgressions in commercial varieties.  相似文献   

3.
The chromosome 7Dv of Aegilops ventricosa (syn. Triticum ventricosum, 2n = 4x = 28, genome DvDvMvMv) carries the gene Pch1 for resistance to eyespot. This gene has previously been transferred to chromosome 7D of bread wheat, T. aestivum (2n = 6x = 42, genome AABBDD). To (1) enhance the level of resistance of bread wheat by increasing the copy number of Pch1, and (2) create eyespot-resistant triticales, meiotically stable Pch1-carrying durum lines were selected from the backcross progenies of a cross between Ae. ventricosa and T. durum cv. Creso ph1c (2n = 4x = 28, genome AABB). The Pch1 transfer, likely resulting from homoeologous recombination, was located at the distal position on the long arm of chromosome 7A. The 7A microsatellite marker Xgwm 698 was found closely linked in repulsion to the introgression in the resistant recombination lines, and the endopeptidase allele located on chromosome 7A of cv. Creso ph1c was lost.  相似文献   

4.

Key message

Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars.

Abstract

Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker–trait associations (MTAs) were identified by considering associations with a ?log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.
  相似文献   

5.
Eyespot is an economically important fungal disease of wheat and other cereals caused by two fungal species: Oculimacula yallundae and Oculimacula acuformis. However, only two eyespot resistance genes have been characterised and molecular markers made available to plant breeders. These resistances are Pch1, introduced into wheat from the relative Aegilops ventricosa, and Pch2, originally identified in the cultivar Cappelle Desprez (CD). There are drawbacks associated with both resistances; Pch1 is linked to deleterious traits carried on the Ae. ventricosa introgression and Pch2 has been shown to have limited effectiveness. An additional resistance has been reported on chromosome 5A of CD that confers resistance to eyespot in adult plants. In the present study, we demonstrate that resistance on this chromosome is effective against both O. yallundae and O. acuformis eyespot pathogens and confers resistance at both seedling and adult plant stages. This resistance was mapped in both seedling bioassays and field trials in a 5A recombinant population derived from a cross between CD and a CD single chromosome substitution line carrying 5A from the susceptible line Bezostaya. The resistance was also mapped using seedling bioassays in a 5A recombinant population derived from a cross between the susceptible line Chinese Spring (CS) and a single chromosome substitution line carrying 5A from CD. A single major QTL on the long arm of chromosome 5A was detected in all experiments. Furthermore, the SSR marker Xgwm639 was found to be closely associated with the resistance and could be used for marker-assisted selection of the eyespot resistance by plant breeders.  相似文献   

6.
Wheat is prone to strawbreaker foot rot (eyespot), a fungal disease caused by Oculimacula yallundae and O. acuformis. The most effective source of genetic resistance is Pch1, a gene derived from Aegilops ventricosa. The endopeptidase isozyme marker allele Ep-D1b, linked to Pch1, has been shown to be more effective for tracking resistance than DNA-based markers developed to date. Therefore, we sought to identify a candidate gene for Ep-D1 as a basis for a DNA-based marker. Comparative mapping suggested that the endopeptidase loci Ep-D1 (wheat), enp1 (maize), and Enp (rice) were orthologous. Since the product of the maize endopeptidase locus enp1 has been shown to exhibit biochemical properties similar to oligopeptidase B purified from E. coli, we reasoned that Ep-D1 may also encode an oligopeptidase B. Consistent with this hypothesis, a sequence-tagged-site (STS) marker, Xorw1, derived from an oligopeptidase B-encoding wheat expressed-sequence-tag (EST) showed complete linkage with Ep-D1 and Pch1 in a population of 254 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Coda and Brundage. Two other STS markers, Xorw5 and Xorw6, and three microsatellite markers (Xwmc14, Xbarc97, and Xcfd175) were also completely linked to Pch1. On the other hand, Xwmc14, Xbarc97, and Xcfd175 showed recombination in the W7984 × Opata85 RIL population suggesting that recombination near Pch1 is reduced in the Coda/Brundage population. In a panel of 44 wheat varieties with known eyespot reactions, Xorw1, Xorw5, and Xorw6 were 100% accurate in predicting the presence or absence of Pch1 whereas Xwmc14, Xbarc97, and Xcfd175 were less effective. Thus, linkage mapping and a germplasm survey suggest that the STS markers identified here should be useful for indirect selection of Pch1.  相似文献   

7.
刘方慧  牛永春  邓晖  檀根甲 《遗传学报》2007,34(12):1123-1130
小麦农家品种赤壳(苏1900)对当前我国小麦条锈菌(Puccinia striiformis Westend.f.sp.tritici)多个流行小种均有较好抗性。遗传分析表明,该品种对条中32号小种的抗性是由一对显性基因控制。本文采用分离群体分析法(bulked segregant analysis,BSA)和微卫星多态性分析方法,对该基因进行了分子标记和定位研究。用Taichung29×赤壳的F2代分离群体建立抗、感DNA池,共筛选了400多对SSR引物,发现5个标记Xwmc44、Xgwm259、Xwmc367、Xcfa2292、Xbarc80在抗、感DNA池间与在抗、感亲本间同样具有多态性,它们均位于1BL染色体臂上。经用具有140株抗病株、60株感病株共200株植株的F2代分离群体进行的遗传连锁性检测,上述5个标记均与目的基因相连锁,遗传距离分别为8.3cM、9.1cM、17.2cM、20.6cM和31.6cM。用全套21个中国春缺-四体材料进行的检测进一步证实了这5个SSR标记均位于小麦1B染色体上。综合上述结果,将赤壳中的主效抗条锈病基因YrChk定位在1BL染色体臂上。与以前已定位于1B染色体上的抗条锈病基因的比较研究表明,YrChk基因可能是一个新的抗条锈病基因。小麦农家品种中抗病基因资源的发掘和利用将有助于提高我国小麦生产品种中的抗病基因丰富度,有助于改善长期以来小麦生产品种中抗病基因单一化的局面。  相似文献   

8.
The Yr17 gene, which is present in many European wheat cultivars, displays yellow rust resistance at the seedling stage. The gene introduced into chromosome 2A from Aegilops ventricosa was previously found to be closely linked (0.5 cM) to leaf and stem rust resistance genes Lr37 and Sr38, respectively. The objective of this study was to identify molecular markers linked to the Yr17 gene. We screened with RAPD primers, for polymorphism, the DNAs of cv. Thatcher and the leaf rust-resistant near-isogenic line (NIL) RL 6081 of cv. Thatcher carrying the Lr37 gene. Using a F2 progeny of the cross between VPM1 (resistant) and Thésée (susceptible), the RAPD marker OP-Y15580 was found to be closely linked to the Yr17 gene. We converted the OP- Y15580 RAPD marker into a sequence characterized amplified region (SCAR). This SCAR marker (SC-Y15) was linked at 0.8 ± 0.7 cM to the Yr17 resistance gene. We tested the SC-Y15 marker over a survey of 37 wheat cultivars in order to verify its consistency in different genetic backgrounds and to explain the resistance of some cultivars against yellow rust. Moreover, we showed that the Xpsr150-2Mv locus marker of Lr gene described by Bonhomme et al. [6] which possesses A. ventricosa introgression on the 2A chromosome was also closely linked to the Yr17 gene. Both the SCAR SC-Y15 and Xpsr150-2Mv markers should be used in breeding programmes in order to detect the cluster of the three genes Yr17, Lr37 and Sr38 in cross progenies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.

Key message

Phenotyping and mapping data reveal that chromosome intervals containing eyespot resistance genes Pch1 and Pch2 on 7D and 7A, respectively, do not overlap, and thus, these genes are not homoeloci.

Abstract

Eyespot is a stem-base fungal disease of cereals growing in temperate regions. Two main resistances are currently available for use in wheat. Pch1 is a potent single major gene transferred to wheat from Aegilops ventricosa and located on the distal end of chromosome 7D. Pch2, a moderate resistance deriving from Cappelle Desprez, is located at the end of 7AL. The relative positions of Pch1 and Pch2 on 7D and 7A, respectively, suggest that they are homoeoloci. A single seed decent recombinant F7 population was used to refine the position of Pch2 on 7A. New markers designed to 7D also allowed the position of Pch1 to be further defined. We exploited the syntenic relationship between Brachypodium distachyon and wheat to develop 7A and 7D specific KASP markers tagging inter-varietal and interspecific SNPs and allow the comparison of the relative positions of Pch1 and Pch2 on 7D and 7A. Together, phenotyping and mapping data reveal that the intervals containing Pch1 and Pch2 do not overlap, and thus, they cannot be considered homoeloci. Using this information, we analysed two durum wheat lines carrying Pch1 on 7A to determine whether the Ae.ventricosa introgression extended into the region associated with Pch2. This identified that the introgression is distal to Pch2 on 7A, providing further evidence that the genes are not homoeoloci. However, it is feasible to use this material to pyramid Pch1 and Pch2 on 7A in a tetraploid background and also to increase the copy number of Pch1 in combination with Pch2 in a hexaploid background.
  相似文献   

10.
Genetic and physical characterization of chromosome 4DL in wheat.   总被引:8,自引:0,他引:8  
R Milla  J P Gustafson 《Génome》2001,44(5):883-892
The long arm of chromosome 4D in wheat (Triticum aestivum L.) has been shown in previous studies to harbor genes of agronomic importance. A major dominant gene conferring Aluminum (Al) tolerance (Alt2 in 'Chinese Spring' and AltBH in 'BH 1146'), and the Knal locus controlling the K+/Na+ discrimination in saline environments have been mapped to this chromosome arm. However, accurate information on the genetic and physical location of markers related to any of these genes is not available and would be useful for map-based cloning and marker-assisted plant breeding. In the present study, using a population of 91 recombinant inbred lines segregating for Al tolerance, we provide a more extensive genetic linkage map of the chromosome arm 4DL based on RFLP, SSR, and AFLP markers, delimiting the AltBH gene to a 5.9-cM interval between markers Xgdm125 and Xpsr914. In addition, utilizing a set of wheat deletion lines for chromosome arm 4DL, the AltBH gene was physically mapped to the distal region of the chromosome, between deletion breakpoints 0.70 and 0.86, where the kilobase/centimorgan ratio is assumed to be low, making the map-based cloning of the gene a more realistic goal. The polymorphism rates in chromosome arm 4DL for the different types of markers used were extremely low, as confirmed by the physical mapping of AFLPs. Finally, analysis of 1 Mb of contiguous sequence of Arabidopsis chromosome 5 flanking the gene homologous to the BCD1230 clone (a cosegregating marker in our population coding for a ribulose-5-phosphate-3-epimerase gene), revealed a previously identified region of stress-related and disease-resistance genes. This could explain the collinearity observed in comparative mapping studies among different species and the low level of polymorphism detected in the chromosome arm 4DL in hexaploid wheat.  相似文献   

11.
小麦叶锈病是影响小麦产量的最主要病害之一,CIMMYT品系19HRWSN-76高抗小麦叶锈病,以该品系与感病品系郑州5389杂交得到F2群体,利用叶锈菌生理小种FHJP对F2群体接菌鉴定,结果显示群体的抗感比例符合3∶1的理论比值,推测19HR WSN-76的抗叶锈性由一对显型基因控制,暂命名为Lr HR76。利用分子标记技术和分离群体分组分析法对F2群体进行分子标记检测,位于3DL的SSR标记barc71与该抗病基因连锁,遗传距离为3.0 c M。  相似文献   

12.
Fusarium head blight (FHB) of wheat causes not only significant reduction in grain yield and end-use quality, but also the contamination of the grain with mycotoxins that are detrimental to human and animal health after consumption of infected grain. Growing resistant varieties is an effective approach to minimize the FHB damage. The Chinese wheat landrace Haiyanzhong (HYZ) shows a high level of resistance to FHB. To identify quantitative trait loci (QTL) that contribute to FHB resistance in HYZ, 136 recombinant inbred lines (RIL) were developed from a cross of HYZ and Wheaton, a hard spring wheat cultivar from the USA. The RIL and their parents were evaluated for percentage of scabbed spikelets (PSS) in both greenhouse and field environments. Five QTL were detected for FHB resistance in HYZ with one major QTL on 7DL. The 7DL QTL peaked at SSR marker Xwmc121, which is flanked by the SSR markers Xcfd46 and Xwmc702. This QTL explained 20.4?C22.6% of the phenotypic variance in individual greenhouse experiments and 15.9% in a field experiment. Four other minor QTL on 6BS (two QTL), 5AS and 1AS each explained less than 10% of the phenotypic variance in individual experiments. HYZ carried the favorable alleles associated with FHB resistance at the QTL on 7DL, 6BS and 5AS, and the unfavorable allele at the QTL on 1AS. The major QTL on 7D can be used to improve the FHB resistance in wheat breeding programs and add diversity to the FHB resistance gene pool.  相似文献   

13.
Aluminum (Al) toxicity is one of the major constrains for wheat production in many wheat growing areas worldwide. Further understanding of inheritance of Al resistance may facilitate improvement of Al resistance of wheat cultivars (Triticum aestivum L.). A set of ditelosomic lines derived from the moderately Al-resistant wheat cultivar Chinese Spring was assessed for Al resistance. The root growth of ditelosomic lines DT5AL, DT7AL, DT2DS and DT4DS was significantly lower than that of euploid Chinese Spring under Al stress, suggesting that Al-resistance genes might exist on the missing chromosome arms of 5AS, 7AS, 2DL and 4DL of Chinese Spring. A population of recombinant inbred lines (RILs) from the cross Annong 8455 × Chinese Spring-Sumai 3 7A substitution line was used to determine the effects of these chromosome arms on Al resistance. A genetic linkage map consisting of 381 amplified fragment length polymorphism (AFLP) markers and 168 simple sequence repeat (SSR) markers was constructed to determine the genetic effect of the quantitative trait loci (QTLs) for Al resistance in Chinese Spring. Three QTLs, Qalt.pser-4D, Qalt.pser-5A and Qalt.pser-2D, were identified that enhanced root growth under Al stress, suggesting that inheritance of Al resistance in Chinese Spring is polygenic. The QTL with the largest effect was flanked by the markers of Xcfd23 and Xwmc331 on chromosome 4DL and most probably is multi-allelic to the major QTL identified in Atlas 66. Two additional QTLs, Qalt.pser-5A and Qalt.pser-2D on chromosome 5AS and 2DL, respectively, were also detected with marginal significance in the population. Some SSR markers identified in this study would be useful for marker-assisted pyramiding of different QTLs for Al resistance in wheat cultivars.  相似文献   

14.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

15.
Eyespot is an economically important disease of wheat caused by the soilborne fungi Oculimacula yallundae and O. acuformis. These pathogens infect and colonize the stem base, which results in lodging of diseased plants and reduced grain yield. Disease resistant cultivars are the most desirable control method, but resistance genes are limited in the wheat gene pool. Some accessions of the wheat wild relative Aegilops longissima are resistant to eyespot, but nothing is known about the genetic control of resistance. A recombinant inbred line population was developed from the cross PI 542196 (R) × PI 330486 (S) to map the resistance genes and better understand resistance in Ae. longissima. A genetic linkage map of the S(l) genome was constructed with 169 wheat microsatellite markers covering 1261.3 cM in 7 groups. F(5) lines (189) were tested for reaction to O. yallundae and four QTL were detected in chromosomes 1S(l), 3S(l), 5S(l), and 7S(l). These QTL explained 44 % of the total phenotypic variation in reaction to eyespot based on GUS scores and 63 % for visual disease ratings. These results demonstrate that genetic control of O. yallundae resistance in Ae. longissima is polygenic. This is the first report of multiple QTL conferring resistance to eyespot in Ae. longissima. Markers cfd6, wmc597, wmc415, and cfd2 are tightly linked to Q.Pch.wsu-1S ( l ), Q.Pch.wsu-3S ( l ), Q.Pch.wsu-5S ( l ), and Q.Pch.wsu-7S ( l ), respectively. These markers may be useful in marker-assisted selection for transferring resistance genes to wheat to increase the effectiveness of resistance and broaden the genetic diversity of eyespot resistance.  相似文献   

16.
5R618是高抗叶锈病小麦品系。为了确定该品系所携带的抗叶锈基因,以5R618与感病小麦品种郑州5389杂交获得F1,自交获得F2分离群体以及F2∶3家系,用叶锈菌生理小种THJP对亲本、F2分离群体以及F2∶3家系进行叶锈抗性鉴定,然后进行分子标记分析。结果显示,5R618对生理小种THJP的抗病性由1对显性基因控制,该基因暂命名为Lr5R。经过亲本和抗感池间分子标记筛选以及F2∶3家系的标记检测,Lr5R定位于染色体3DL上,barc71和STS24-16是Lr5R最近的2个标记,遗传距离分别为0.9 c M和2.1 c M。  相似文献   

17.
Eyespot is a fungal disease of the stem base of cereal crops and causes lodging and the premature ripening of grain. Wheat cultivar Cappelle Desprez contains a highly durable eyespot resistance gene, Pch2 on the long arm of chromosome 7A. A cDNA-amplified fragment length polymorphism (AFLP) platform was used to identify genes differentially expressed between the eyespot susceptible variety Chinese Spring (CS) and the CS chromosome substitution line Cappelle Desprez 7A (CS/CD7A) which contains Pch2. Induced and constitutive gene expression was examined to compare differences between non-infected and plants infected with Oculimacula acuformis. Only 34 of approximately 4,700 cDNA-AFLP fragments were differentially expressed between CS and CS/CD7A. Clones were obtained for 29 fragments, of which four had homology to proteins involved with plant defence responses. Fourteen clones mapped to chromosome 7A and three of these mapped in the region of Pch2 making them putative candidates for involvement in eyespot resistance. Of particular importance are two fragments; 4CD7A8 and 19CD7A4, which have homology to an Oryza sativa putative callose synthase protein and a putative cereal cyst nematode NBS-LRR disease resistance protein (RCCN) respectively. Differential expression associated with Pch2 was examined by semi-quantitative RT-PCR. Of those genes tested, only four were differentially expressed at 14 days post inoculation. We therefore suggest that a majority of the differences in the cDNA-AFLP profiles are due to allelic polymorphisms between CS and CD alleles rather than differences in expression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
王悦冰  徐世昌  徐仲  刘太国  蔺瑞明 《遗传》2006,28(3):306-310
Vilmorin23是小麦条锈菌国际鉴别寄主和国际上重要抗源材料。采用SSR技术,利用由Vilmorin23为基因供体转育而成的小麦抗条锈近等基因系Taichung29*6/YrV23,选用YrV23所在2B染色体上的55对SSR引物,对Taichung29*6/ YrV23及其轮回亲本Taichung29和抗性基因供体Vilmorin23的基因组DNA进行PCR扩增和聚丙烯酰胺凝胶电泳分析。结果显示,引物Xwmc356在近等基因系与轮回亲本间扩增出特异性DNA片段,经F2代群体150个抗、感单株检测证实,该片段位点与抗条锈病基因YrV23有连锁关系,遗传距离为9.4 cM。Xwmc356可作为抗条锈基因YrV23的SSR标记。   相似文献   

19.
The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomicin situ hybridization (GISH) and RFLP analysis. The genomic DNA ofTh. intermedium was used as a probe, and common wheat genomic DNA as a blocking in GISH experiment. The results showed that the chromosome segments ofTh. intermedium were transferred to the distal end of a pair of wheat chromosomes. RFLP analysis indicated that the translocation line H960642 is a T7DS-7DL-7XL translocation by using 8 probes mapped on the homoeologous group 7 in wheat. The translocation breakpoint is located between Xpsr680 and Xpsr965 about 90–99 cM from the centromere. The RFLP markers psr680 and psr687 were closely linked with the BYDV resistance gene. The gene is located on the distal end of 7XL around Xpsr680 and Xpsr687.  相似文献   

20.
H22 is a major resistance gene conferring high-level of antibiosis to Hessian fly [Mayetiola destructor (Say)] larvae. It was previously assigned to wheat chromosome 1D through monosomic analysis (Raupp et al. in J Hered 84:142–145, 1993). The objective of this study was to identify molecular markers that can be used for marker-assisted selection for wheat breeding, and to further map this gene toward map-based cloning. Forty-five simple sequence repeat (SSR) and sequence-tagged site (STS) markers specific to chromosome 1D were evaluated for linkage to H22 using a segregating population consisting of 192 F2:3 families, which were derived from the cross Tugela-Dn1 × KS85WGRC01(H22). The STS Xhor2kv and SSR Xgdm33 are two flanking markers that are tightly linked to H22 at genetic distances of 0.3 and 1.0 cM, respectively. Five other SSR markers including Xgpw7082, Xwmc147, Xcfd15, Xwmc432 and Xwmc336 were also linked to H22 at the distance from 0.8 to 20.8 cM. Analysis of Chinese Spring (CS) deletion lines revealed that all the H22-linked markers are located distal to the breakpoint of del 1DS-5, indicating that the H22 gene is located at the distal 30% region on the short arm of wheat chromosome 1D. Genomic comparison suggested that the H22 gene is located in the same or similar chromosomal region as the leaf rust resistance genes Lr21 and Lr40 on 1DS, and orthologous to the H9 gene cluster of 1AS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号