首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The high concentration of HCO3 ions (150 mM) in the human pancreatic ducts raises the question of the membrane proteins responsible for their secretion in addition to the Cl/HCO3 exchanger. In this study, we investigated the expression of carbonic anhydrase IV (CA IV), a possible candidate. Experiments were carried out on specimens of normal human pancreas obtained from brain-dead donors (n=9) as well as on isolated human ductal cells. Two antibodies were generated: CA IV NH2 antibody directed against the NH2 terminal of human glycosyl phosphatidylinositol (GPI)-anchored CA IV and CA IV COOH antibody directed against the COOH terminal of the same protein before its association with a GPI in the rough endoplasmic reticulum. A 35-kDa CA IV was detected in the homogenates of human pancreas. Immunocytochemistry demonstrated the expression of CA IV in centroacinar cells and in intercalated, intralobular, and interlobular ductal cells. The immunoreactivity observed with the CA IV COOH antibody was mainly localized on luminal membranes of ductal cells. Treatment of purified plasma membranes with phosphatidylinositol-phospholipase C indicated that the CA IV expressed in pancreatic ducts was not GPI-anchored. Its detection in the same extracts by the CA IV COOH antibody indicated that it was anchored by a hydrophobic segment at the carboxy terminal. Taken together, these results suggest that normal human pancreatic ductal cells express a 35-kDa CA IV anchored in their luminal plasma membrane by a hydrophobic segment of the COOH terminus. In view of its localization and its mode of anchorage in luminal plasma membranes, this CA IV may participate in the maintenance of luminal pH.The first two authors have contributed equally to this work  相似文献   

2.
Human pancreatic ducts secrete a bicarbonate-rich fluid but our knowledge of the secretory process is based mainly on studies of animal models. Our aim was to determine whether the HCO(3)(-) transport mechanisms in a human ductal cell line are similar to those previously identified in guinea-pig pancreatic ducts. Intracellular pH was measured by microfluorometry in Capan-1 cell monolayers grown on permeable filters and loaded with BCECF. Epithelial polarization was assessed by immunolocalization of occludin. Expression of mRNA for key electrolyte transporters and receptors was evaluated by RT-PCR. Capan-1 cells grown on permeable supports formed confluent, polarized monolayers with well developed tight junctions. The recovery of pH(i) from an acid load, induced by a short NH(4)(+) pulse, was mediated by Na(+)-dependent transporters located exclusively at the basolateral membrane. One was independent of HCO(3)(-) and blocked by EIPA (probably NHE1) while the other was HCO(3)(-)-dependent and blocked by H(2)DIDS (probably pNBC1). Changes in pH(i) following blockade of basolateral HCO(3)(-) accumulation confirmed that the cells achieve vectorial HCO(3)(-) secretion. Dose-dependent increases in HCO(3)(-) secretion were observed in response to stimulation of both secretin and VPAC receptors. ATP and UTP applied to the apical membrane stimulated HCO(3)(-) secretion but were inhibitory when applied to the basolateral membrane. HCO(3)(-) secretion in guinea-pig ducts and Capan-1 cell monolayers share many common features, suggesting that the latter is an excellent model for studies of human pancreatic HCO(3)(-) secretion.  相似文献   

3.
Human pancreatic duct cells secrete HCO3- ions mediated by a Cl-/HCO3- exchanger and a HCO3- channel that may be a carbonic anhydrase IV (CA IV) in a channel-like conformation. This secretion is regulated by CFTR (Cystic Fibrosis Transmembrane conductance Regulator). In CF cells homozygous for the deltaF508 mutation, the defect in targeting of CFTR to plasma membranes leads to a disruption in the secretion of Cl- and HCO3 ions along with a defective targeting of other proteins. In this study, we analyzed the targeting of membrane CA IV in the human pancreatic duct cell line CFPAC-1, which expresses a deltaF508 CFTR, and in the same cells transfected with the wild-type CFTR (CFPAC-PLJ-CFTR6) or with the vector alone (CFPAC-PLJ6). The experiments were conducted on cells in the stationary phase the polarized state of which was checked by the distribution of occludin and actin. We show that both cell lines express a 35-kDa CA IV at comparable levels. Analysis of fractions of plasma membranes purified on a Percoll gradient evidenced lower levels of CA IV (8-fold) in the CFPAC-1 than in the CFPAC-PLJ-CFTR6 cells. Quantitative analyses showed that 6- to 10-fold fewer cells in the CFPAC-1 cell line exhibited membrane CA IV-immunoreactivity than in the CFPAC-PLJ-CFTR6 cell line. Taken together, these results suggest that the targeting of CA IV to apical plasma membranes is impaired in CFPAC-1 cells. CA IV/gamma-adaptin double labeling demonstrated the presence of CA IV in the trans-Golgi network (TGN) of numerous CFPAC-1 cells, indicating that trafficking was disrupted on the exit face of the TGN. The retargeting of CA IV observed in CFPAC-PLJ-CFTR6 cells points to a relationship between the traffic of CFTR and CA IV. On the basis of these observations, we propose that the absence of CA IV in apical plasma membranes due to the impairment in targeting in cells expressing a deltaAF508 CFTR largely contributes to the disruption in HCO3- secretion in CF epithelia.  相似文献   

4.
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ~140 mM HCO(3)(-) or more, mouse and rat ducts secrete ~40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.  相似文献   

5.
In the rat, pancreatic HCO(-)(3) secretion is believed to be mediated by duct cells with an apical Cl(-)/HCO(-)(3) exchanger acting in parallel with a cAMP-activated Cl(-) channel and protons being extruded through a basolateral Na(+)/H(+) exchanger. However, this may not be the only mechanism for HCO(-)(3) secretion by the rat pancreas. Recently, several members of electrogenic Na(+)/HCO(-)(3) cotransporters (NBC) have been cloned. Here we report the cloning of a NBC from rat pancreas (rpNBC). This rpNBC is 99% identical to the longer, more common form of NBC [pNBC; 1079 amino acids (aa); 122 kDa in human heart, pancreas, prostate, and a minor clone in kidney]. The longer NBC isoforms are identical to the rat and human kidney-specific forms (kNBC; 1035 aa; 116 kDa) at the approximately 980 C-terminal aa's and are unique (with different lengths) at the initial N-terminus. Using polyclonal antibodies to the common N- and C-termini of rat kidney NBC, a approximately 130-kDa protein band was labeled by immunoblotting of rat pancreas homogenate and was enriched in the plasma membrane fraction. Immunofluorescence and immunoperoxidase light microscopy of rat pancreatic tissue with both antibodies revealed basolateral labeling of acinar cells. Labeling of both apical and basolateral membranes was found in centroacinar cells, intra- and extralobular duct, and main duct cells. The specificity of the antibody labeling was confirmed by antibody preabsorption experiments with the fusion protein used for immunization. The data suggest that rpNBC likely plays a more important role in the transport of HCO(-)(3) by rat pancreatic acinar and duct cells than previously believed.  相似文献   

6.
The subcellular distribution of carbonic anhydrase II, either throughout the cytosol or in the cytoplasm close to the apical plasma membrane or vesicular compartments, suggests that this enzyme may have different roles in the regulation of pH in intra- or extracellular compartments. To throw more light on the role of pancreatic carbonic anhydrase II, we examined its expression and subcellular distribution in Capan-1 cells. Immunocytochemical analysis by light, confocal, and electron microscopy, as well as immunoblotting of cell homogenates or purified plasma membranes, was performed. A carbonic anhydrase II of 29 kD associated by weak bonds to the inner leaflet of apical plasma membranes of polarized cells was detected. This enzyme was co-localized with markers of Golgi compartments. Moreover, the defect of its targeting to apical plasma membranes in cells treated with brefeldin A was indicative of its transport by the Golgi apparatus. We show here that a carbonic anhydrase II is associated with the inner leaflet of apical plasma membranes and with the cytosolic side of the endomembranes of human cancerous pancreatic duct cells (Capan-1). These observations point to a role for this enzyme in the regulation of intra- and extracellular pH.  相似文献   

7.
Membrane-associated carbonic anhydrase (CA) has a crucial role in renal HCO(3)(-) absorption. CA activity has been localized to both luminal and basolateral membranes of the tubule epithelial cells. CA XII is a transmembrane isoenzyme that has been demonstrated in the basolateral plasma membrane of human renal, intestinal, and reproductive epithelia. The present study was designed to demonstrate the distribution of CA XII expression in the rodent kidney. A new polyclonal antibody to recombinant mouse CA XII was used in both Western blotting and immunohistochemistry. Western blotting analysis revealed a 40-45-kD polypeptide in CA XII-expressing CHO cells and isolated membranes of mouse and rat kidney. Immunofluorescence staining localized CA XII in the basolateral plasma membranes of S1 and S2 proximal tubule segments. Abundant basolateral staining of CA XII was seen in a subpopulation of cells in both cortical and medullary collecting ducts. Double immunofluorescence staining identified these cells as H(+)-secreting type A intercalated cells. The localization of CA XII in the peritubular space of proximal tubules suggests that it may play a role in renal HCO(3)(-) absorption, whereas the function of CA XII in the type A intercalated cells needs further investigation.  相似文献   

8.
9.
Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium express H(+)/HCO(3)(-) transporters, which depend on gradients created by the Na(+)/K(+)-ATPase. However, the model cannot fully account for high-bicarbonate concentrations, and other active transporters, i.e. pumps, have not been explored. Here we show that pancreatic ducts express functional gastric and non-gastric H(+)-K(+)-ATPases. We measured intracellular pH and secretion in small ducts isolated from rat pancreas and showed their sensitivity to H(+)-K(+) pump inhibitors and ion substitutions. Gastric and non-gastric H(+)-K(+) pumps were demonstrated on RNA and protein levels, and pumps were localized to the plasma membranes of pancreatic ducts. Quantitative analysis of H(+)/HCO(3)(-) and fluid transport shows that the H(+)-K(+) pumps can contribute to pancreatic secretion in several species. Our results call for revision of the bicarbonate transport physiology in pancreas, and most likely other epithelia. Furthermore, because pancreatic ducts play a central role in several pancreatic diseases, it is of high relevance to understand the role of H(+)-K(+) pumps in pathophysiology.  相似文献   

10.
Carbonic anhydrase (CA) IV was purified to homogeneity from rat lung microsomal and plasma membranes. The single N-terminal amino acid sequence showed 55% similarity to that reported for human CA IV. A monospecific antibody to the 39-kDa rat enzyme that cross-reacts on Western blots with CA IVs from other mammalian species was produced in rabbits. Digestion of rat lung enzyme with endoglycosidase (peptide-N-glycosidase F) reduced the Mr to 36,000, suggesting that rat CA contains one N-linked oligosaccharide chain. All of eight additional mammalian CA IVs that were examined also contained oligosaccharide chains, as evidenced by reduction in Mr from 52,000 (cow, sheep, and rabbit), 42,000 (pig, guinea pig, and dog), and 39,000 (mouse and hamster) to 36,000 after treatment of the respective lung microsomal membranes with peptide-N-glycosidase F. The 36-kDa human enzyme showed no change in molecular mass with this treatment. Thus, the human CA IV is the exceptional one in lacking carbohydrate. Rat lung CA IV was found to be relatively resistant to sodium dodecyl sulfate and to be anchored to membranes by a phosphatidylinositol-glycan linkage; both properties were found to be shared by other mammalian CA IVs. Western blot analysis indicated distribution of CA IV in rat tissues other than kidney and lung where it was previously known to be present. CA IV was particularly abundant in rat brain, muscle, heart, and liver, all locations where the CA IV enzyme was not known to be present previously. None was detected in rat skin or spleen.  相似文献   

11.
Fluid and HCO(3)(-) secretion are vital functions of the pancreatic duct and other secretory epithelia. CFTR and Cl(-)/HCO(3)(-) exchange activity at the luminal membrane are required for these functions. The molecular identity of the Cl(-)/HCO(3)(-) exchangers and their relationship with CFTR in determining fluid and HCO(3)(-) secretion are not known. We show here that the Cl(-)/HCO(3)(-) exchanger slc26a6 controls CFTR activity and ductal fluid and HCO(3)(-) secretion. Unexpectedly, deletion of slc26a6 in mice and measurement of fluid and HCO(3)(-) secretion into sealed intralobular pancreatic ducts revealed that deletion of slc26a6 enhanced spontaneous and decreased stimulated secretion. Remarkably, inhibition of CFTR activity with CFTR(inh)-172, knock-down of CFTR by siRNA and measurement of CFTR current in WT and slc26a6(-/-) duct cells revealed that deletion of slc26a6 resulted in dis-regulation of CFTR activity by removal of tonic inhibition of CFTR by slc26a6. These findings reveal the intricate regulation of CFTR activity by slc26a6 in both the resting and stimulated states and the essential role of slc26a6 in pancreatic HCO(3)(-) secretion in vivo.  相似文献   

12.
Physiological and biochemical studies have provided indirect evidence for a membrane-associated carbonic anhydrase (CA) isoform, similar to mammalian type IV CA, in the gills of dogfish (Squalus acanthias). This CA isoform is linked to the plasma membrane of gill epithelial cells by a glycosylphosphatidylinositol anchor and oriented toward the plasma, such that it can catalyze the dehydration of plasma HCO(3)(-) ions. The present study directly tested the hypothesis that CA IV is present in dogfish gills in a location amenable to catalyzing plasma HCO(3)(-) dehydration. Homology cloning techniques were used to assemble a 1,127 base pair cDNA that coded for a deduced protein of 306 amino acids. Phylogenetic analysis suggested that this protein was a type IV CA. For purposes of comparison, a second cDNA (1,107 base pairs) was cloned from dogfish blood; it encoded a deduced protein of 260 amino acids that was identified as a cytosolic CA through phylogenetic analysis. Using real-time PCR and in situ hybridization, mRNA expression for the dogfish type IV CA was detected in gill tissue and specifically localized to pillar cells and branchial epithelial cells that flanked the pillar cells. Immunohistochemistry using a polyclonal antibody raised against rainbow trout type IV CA revealed a similar pattern of CA IV immunoreactivity and demonstrated a limited degree of colocalization with Na(+)-K(+)-ATPase immunoreactivity. The presence and localization of a type IV CA isoform in the gills of dogfish is consistent with the hypothesis that branchial membrane-bound CA with an extracellular orientation contributes to CO(2) excretion in dogfish by catalyzing the dehydration of plasma HCO(3)(-) ions.  相似文献   

13.
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.  相似文献   

14.
The structural integrity of the Golgi complex is essential to its functions in the maturation, sorting, and transport of plasma membrane proteins. Previously, we demonstrated that in pancreatic duct CFPAC-1 cells, which express DeltaF508 CFTR (cystic fibrosis transmembrane conductance regulator), the intracellular trafficking of carbonic anhydrase IV (CA IV), a membrane protein involved in HCO(3)(-) secretion, was impaired. To determine whether these abnormalities were related to changes in the Golgi complex, we examined the ultrastructure and distribution of Golgi compartments with regard to the microtubule cytoskeleton in CFPAC-1 cells transfected or not with the wild-type CFTR. Ultrastructural and immunocytochemical analysis showed that in polarized CFPAC-1 cells, Golgi stacks were disconnected from one another and scattered throughout the cytoplasm. The colocalization of CA IV with markers of Golgi compartments indicated the ability of stacks to transfer this enzyme. This Golgi dispersal was associated with abnormal microtubule distribution and multiplicity of the microtubule-organizing centers (MTOCs). In reverted cells, the normalization of Golgi structure, microtubule distribution, and MTOC number was observed. These observations suggest that the entire biosynthetic/secretory pathway is disrupted in CFPAC-1 cells, which might explain the abnormal intracellular transport of CA IV. Taken together, these results point to the fact that the expression of DeltaF508 CFTR affects the integrity of the secretory pathway.  相似文献   

15.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

16.
We have studied the expression and localization of several H(+) and HCO(3)(-) transporters, whose presence in the rat pancreas is still unclear. The Cl(-)/HCO(3)(-) exchanger AE2, the Na(+)/H(+) exchangers NHE1 and NHE4, and the 31-kD and 70-kD vacuolar H(+)-ATPase (V-ATPase) subunits were detected by immunoblotting and immunocytochemical techniques. Immunoblotting of plasma membranes with transporter-specific antibodies revealed protein bands at approximately 160 kD for AE2, at approximately 90 kD and approximately 103 kD for NHE1 and NHE4, respectively, and at 31 kD and 70 kD for V-ATPase. NHE1 and NHE4 were further identified by amplification of isoform-specific cDNA using RT-PCR. Immunohistochemistry revealed a basolateral location of AE2, NHE1, and NHE4 in acinar cells. In ducts, NHE1 and NHE4 were basolaterally located but no AE2 expression was detected. V-ATPase was detected in zymogen granules (ZGs) by immunogold labeling, and basolaterally in duct cells by immunohistochemistry. The data indicate that NHE1 and NHE4 are co-expressed in rat pancreatic acini and ducts. Basolateral acinar AE2 could contribute to Cl(-) uptake and/or pH regulation. V-ATPase may be involved in ZG fusion/exocytosis and ductal HCO(3)(-) secretion. The molecular identity of the ductal Cl(-)/HCO(3)(-) exchanger remains unclear.  相似文献   

17.
The molecular identity of the apical HCO3(-)-secreting transporter in gastric mucous cells remains unknown despite its essential role in preventing injury and ulcer by gastric acid. Here we report the identification of a Cl-/HCO3- exchanger that is located on apical membranes of gastric surface epithelial cells. RT-PCR studies of mouse gastrointestinal tract mRNAs demonstrated that this transporter, known as anion exchanger isoform 4 (AE4), is expressed in both stomach and duodenum. Northern blot analysis of RNA from purified stomach epithelial cells indicated that AE4 is expressed at higher levels in mucous cells than in parietal cells. Immunoblotting experiments identified AE4 as a approximately 110- to 120-kDa protein in membranes from stomach epithelium and apical membranes from duodenum. Immunocytochemical staining demonstrated that AE4 is expressed in apical membranes of surface cells in both mouse and rabbit stomach and duodenum. Functional studies in oocytes indicated that AE4 functions as a Cl-/HCO3- exchanger. These data show that AE4 is an apical Cl-/HCO3- exchanger in gastric mucous cells and duodenal villus cells. On the basis of its function and location, we propose that AE4 may play an important role in mucosal protection.  相似文献   

18.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a small conductance cAMP-activated chloride ion channel. In the CF pancreatic duct, mutations in CFTR cause a reduction in bicarbonate secretion. This is thought to result from CFTR operating in parallel with a chloride-bicarbonate (Cl(-)/HCO(-)(3)) exchanger, located in the apical membrane of pancreatic duct cells. The molecular basis of this Cl(-)/HCO(-)(3) exchanger has not been identified. A combination of screening cDNA libraries, RNase protection, and 5' RACE analysis was used to identify Cl(-)/HCO(-)(3) exchangers in human fetal pancreas. An AE2 Cl(-)/HCO(-)(3) exchanger was shown to be expressed in human fetal pancreas from the midtrimester of gestation, at a time when CF-associated pathology commences. In addition, an AE1 Cl(-)/HCO(3) was identified in fetal pancreas but was absent from the adult pancreas and cultured ductal epithelial cells from fetal and adult pancreas.  相似文献   

19.
In corneal endothelium, there is evidence for basolateral entry of HCO(3)(-) into corneal endothelial cells via Na(+)-HCO(3)(-) cotransporter (NBC) proteins and for net HCO(3)(-) flux from the basolateral to the apical side. However, how HCO(3)(-) exits the cells through the apical membrane is unclear. We determined that cultured corneal endothelial cells transport HCO(3)(-) similarly to fresh tissue. In addition, Cl(-) channel inhibitors decreased fluid transport by at most 16%, and inhibition of membrane-bound carbonic anhydrase IV by benzolamide or dextran-bound sulfonamide decreased fluid transport by at most 29%. Therefore, more than half of the fluid transport cannot be accounted for by anion transport through apical Cl(-) channels, CO(2) diffusion across the apical membrane, or a combination of these two mechanisms. However, immunocytochemistry using optical sectioning by confocal microscopy and cryosections revealed the presence of NBC transporters in both the basolateral and apical cell membranes of cultured bovine corneal endothelial cells and freshly isolated rabbit endothelia. This newly detected presence of an apical NBC transporter is consistent with its being the missing mechanism sought. We discuss discrepancies with other reports and provide a model that accounts for the experimental observations by assuming different stoichiometries of the NBC transport proteins at the basolateral and apical sides of the cells. Such functional differences might arise either from the expression of different isoforms or from regulatory factors affecting the stoichiometry of a single isoform.  相似文献   

20.
Pancreatic duct cells secrete the HCO(3)(-) ions found in pancreatic juice. While the regulatory pathways that stimulate pancreatic ductal HCO(3)(-) secretion are well described, little is known about inhibitory pathways, apart from the fact that they exist. Nevertheless, such inhibitory pathways may be physiologically important in terms of limiting the hydrostatic pressure within the lumen of the duct, and in terms switching off pancreatic secretion after a meal. Methionine encephalin, insulin, somatostatin, peptide YY, substance P, basolaterally applied adenosine triphosphate, arginine vasopressin, 5-hydroxytryptamine and epidermal growth factor have all been shown to inhibit fluid and/or HCO(3)(-) secretion from pancreatic ducts. Importantly, most of these inhibitors have been shown to reduce secretion in isolated pancreatic ducts, so they must act directly on the ductal epithelium. This brief review provides an overview of our current knowledge of the inhibitors, and inhibitory pathways of pancreatic ductal secretion. SIGNALLING NETWORK FACTS: Methionine encephalin, insulin, somatostatin, peptide YY, substance P, basolaterally applied adenosine triphosphate, arginine vasopressin, 5-hydroxytryptamine and epidermal growth factor have all been shown to inhibit fluid and/or HCO(3)(-) secretion from pancreatic ducts. The inhibition of pancreatic secretion can be mediated by indirect (decreased cholinergic or increased adrenergic stimulation, decreased release of stimulatory hormones) and direct (inhibitory hormone or neurotransmitter acting on the duct cells) mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号