首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A novel moderately halophilic, alkaliphilic, non-motile, non-sporulating, catalase-positive, oxidase-negative, aerobic, coccus-shaped, Gram-positive bacterium, designated strain JSM 071043T, was isolated from a subterranean brine sample collected from a salt mine in Hunan Province, China. Growth occurred with 0.5–20% (w/v) NaCl (optimum 5–10%) at pH 6.5–10.5 (optimum pH 8.5) and at 10–40°C (optimum 25–30°C). Good growth also occurred in the presence of 0.5–20% (w/v) KCl (optimum 5–8%) or 0.5–25% (w/v) MgCl2·6H2O (optimum 5–10%). The peptidoglycan type was A4α (l-Lys–l-Ala–l-Glu) and major cell-wall sugars were tyvelose and mannose. The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Strain JSM 071043T contained MK-9 and MK-8 as the predominant menaquinones and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The DNA G + C content was 67.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JSM 071043T was a member of the suborder Micrococcineae, and was most closely related to Zhihengliuella halotolerans YIM 70185T (sequence similarity 98.9%) and Zhihengliuella alba YIM 90734T (98.2%), and the three strains formed a distinct branch in the phylogenetic tree. The combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the proposal that strain JSM 071043T represents a novel species of the genus Zhihengliuella, for which the name Z. salsuginis sp. nov. is proposed. The type strain is JSM 071043T (= DSM 21149T = KCTC 19466T).  相似文献   

2.
A novel facultative microaerophilic nitrate-reducing bacterium designated CA62NT was isolated from a thermal spring in France. Cells were non-motile rods (2–3 × 0.2 μm) and showed low cytoplasmic density when observed under a phase-contrast microscope. Strain CA62NT grew at temperatures between 50 and 75°C (optimum 65°C) and at a pH between 6.3 and 7.9 (optimum 7.0). NaCl was not required for growth but was tolerated up to 10 gl−1. Sulfate, thiosulfate, elemental sulfur, sulfite, and nitrite were not used as electron acceptors. Nitrate was reduced to nitrite. Strain CA62NT used lactate, pyruvate, glucose, mannose, fructose, and casamino acids and some amino acids as electron donors only in the presence of nitrate as electron acceptor. None of these substrates was fermented. The main end-products of glucose oxidation were acetate, CO2, and traces of H2. The G + C content of the genomic DNA was 70.3 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain CA62NT was affiliated to the Symbiobacterium branch within the Firmicutes and had Symbiobacterium thermophilum and “S. toebii” as its closest phylogenetic relatives. On the basis of phylogenetical and physiological characteristics, strain CA62NT is proposed to be the type strain for the novel species in the novel genus, Caldinitratiruptor microaerophilus gen. nov., sp. nov. (DSM 22660, JCM 16183).  相似文献   

3.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

4.
Chhetri  Geeta  Kim  Inhyup  Seo  Taegun 《Antonie van Leeuwenhoek》2022,115(7):943-952

A Gram-stain-positive, aerobic, motile and rod-shaped bacterium, designated RG28T, was isolated from the roots of rice plant collected from paddy fields in Ilsan, South Korea. Cells of the strain were oxidase-negative but catalase-positive. Strain RG28T was found to grow at 10–50 °C (optimum, 25–30 °C), pH 5.0–10.0 (optimum, pH 7.0) and in 1.0–5.0% (w/v) NaCl (optimum, 0%). The cell-wall peptidoglycan contained meso-diaminopimelic acid and the predominant menaquinones were MK-7 and MK-6. The predominant cellular fatty acids were C16:0, iso-C15:0 and anteiso-C15:0. The major polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, four unidentified aminophosphoglycolipids, four unidentified aminophospholipids, two unidentified glycolipids, one unidentified aminoglycolipid and four unidentified lipids. The genomic DNA G?+?C content was 33.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was closely related to Gottfriedia acidiceleris CBD 119T (98.6%), Gottfriedia solisilvae LMG 18422T (98.5%) and Gottfriedia luciferensis LMG 18422T (98.4%). The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) values between strain RG28T and type strains of Gottfriedia species were lower than the cut-offs (≥?95–96% for ANI and?≥?70% for is DDH) required to define a bacterial species. Meanwhile, the strain has the ability to produce indole-acetic acid (40.5 µg/mL). Phylogenetic, physiological and chemotaxonomic data suggested that strain RG28T represented a novel species of the genus Gottfriedia, for which the name Gottfriedia endophyticus sp. nov. is proposed, with the type strain RG28T (=?KCTC 43327T?=?TBRC 15151T).

  相似文献   

5.
A novel bacterial strain, designated T-Y1T, capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1T belonged to the genus Winogradskyella. Strain T-Y1T exhibited 16S rRNA gene sequence similarity values of 95.0–96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1T contained MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:1 G and iso-C16:0 3-OH as the major fatty acids. The major polar lipids of strain T-Y1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1T to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1T (=KCTC 23891T = CCUG 62216T).  相似文献   

6.
A novel, strictly anaerobic, moderately thermophilic, endospore-forming, sulfate-reducing bacterium, designated TGB60-1T, was isolated from a hydrothermal sediment vent collected from the Tofua Arc in the Tonga Trench. The strain was characterized phenotypically and phylogenetically. The isolated strain was observed to be Gram-positive, with slightly curved rod-shaped cells and a polar flagellum. Strain TGB60-1T was found to grow anaerobically at 37–60 °C (optimum, 50 °C), at pH 6.0–8.5 (optimum, pH 7.0) and with 1.0–4.0 % (w/v) NaCl (optimum, 3.0 %). The electron acceptors utilised were determined to be sulfate, sulfite, and thiosulfate. Strain TGB60-1T was found to utilise pyruvate and H2 as electron donors. Strain TGB60-1T was determined to be related to representatives of the genus Desulfotomaculum and the closest relatives within this genus were identified as Desulfotomaculum halophilum SEBR 3139T, Desulfotomaculum alkaliphilum S1T and Desulfotomaculum peckii LINDBHT1T (92.7, 92.1, and 91.8 % 16S rRNA gene sequence similarity, respectively). The major fatty acids (>20 %) were identified as C16:0 and C18:1 ω7c. The G+C content of the genomic DNA of this novel bacterium was determined to be 53.9 mol%. Based on this polyphasic taxonomic study, strain TGB60-1T is considered to represent a novel species in the genus Desulfotomaculum, for which the name Desulfotomaculum tongense sp. nov. is proposed. The type strain of D. tongense is strain TGB60-1T (= KTCT 4534T = JCM 18733T).  相似文献   

7.
A novel anaerobic bacterium (strain M08_MBT) was isolated from a terrestrial mud volcano (Taman Peninsula, Russia). Gram-stain-negative cells were straight and slender rods with gliding motility, occasionally forming long filaments. The isolate was mesophilic, slightly halo- and alkaliphilic chemoorganoheterotroph, growing on carbohydrates (starch, dextrin, pectin, glucose, fructose, mannose, maltose, trehalose, lactose, sucrose) and proteinaceous compounds (peptone, tryptone, gelatin, casein and albumin). Strain M08_MBT tolerated 3% oxygen in the gas phase while catalase negative. The dominant cellular fatty acids of strain M08_MBT were C15:0, C15:1 and C13:0 acids. 16S rRNA gene sequence analysis revealed that strain M08_MBT belongs to the order Bacteroidales and only distantly related to other cultivated members of this order (85.12–90.01% 16S rRNA gene similarity). The genome of strain M08_MBT had a size of 4.37 Mb with a DNA G + C content of 43.5 mol% (WGS). The genes involved in gliding motility, proteolysis, central carbon metabolism, and oxygen tolerance were listed in genome annotation. Based on the phenotypic and genotypic characteristics, strain M08_MBT represents a novel species of a novel genus within family Tenuifilaceae, with proposed name Perlabentimonas gracilis gen. nov., sp. nov. The type strain is M08_ MBT (=DSM 110720 T = VKM B-3471 T). This is the first representative of Bacteroidales isolated in pure culture from a mud volcano.  相似文献   

8.
Wang GL  Bi M  Liang B  Jiang JD  Li SP 《Current microbiology》2011,62(6):1760-1766
A Gram-negative, strictly aerobic, rod-shaped bacterium, designated strain waxT, was isolated from DDT-contaminated soil in Yangzhou, China. Growth of strain waxT was observed at 10–45°C (optimum 30°C) and pH 5.0–10.0 (optimum pH 7.0–8.0). The predominant fatty acids were iso C15:0 (32.21%) and anteiso C15:0 (22.2%). The strain contained large amounts of the polar lipids diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol, but small amounts of an unknown amino-group-containing polar lipid and phospholipids were also present. The major quinone was ubiquinone-8 (Q-8) and the G + C content of the genomic DNA was 67.12 ± 0.8 mol.%. The phylogenetic tree shows that strain waxT clustered within the genus Pseudoxanthomonas. Isolate waxT showed moderate 16S rRNA gene sequence similarities to Pseudoxanthomonas broegbernensis B1616/1T (98.3%), P. suwonensis 4M1T (98.2%), P. daejeonensis TR6-08T (98%), P. koreensis TR7-09T (97.7%), P. kaohsiungensis J36T (97.5%), P. mexicana AMX 26BT (97.2%), and P. japonensis 12-3T (97%). The level of DNA–DNA relatedness between strain waxT and Pseudoxanthomonas type strains were low, e.g., P. koreensis TR7-09T (25.9%), P. broegbernensis B1616/1T (36.4%), P. suwonensis 4M1T (27.7%), P. daejeonensis TR6-08T (40%), P. kaohsiungensis J36T (20.4%), P. mexicana AMX 26BT (29.0%), P. japonensis 12-3T (33.3%). On the basis of the phenotypic, chemotaxonomic data and molecular properties, strain waxT represents a novel species within the genus Pseudoxanthomonas, for which the name Pseudoxanthomonas jiangsuensis sp. nov. is proposed. The type strain is waxT (=DSM 22398T = CGMCC 1.10137T).  相似文献   

9.
Strain M1-2T was isolated from the black sand from the seashore of Jeju Island, Republic of Korea and was classified using a polyphasic taxonomic approach. Strain M1-2T appeared as Gram-negative, motile rods that could grow in the presence of 1–10% (w/v) NaCl and at temperatures ranging from 4 to 37°C. This isolate has catalase and oxidase activity and hydrolyses aesculin, DNA and l-tyrosine. Based on phylogenetic analysis using 16S rRNA gene sequences, strain M1-2T belongs to the genus Joostella and is clearly distinct from the other described species of this genus, Joostella marina (type strain En5T). The 16S rRNA gene sequence similarity level between M1-2T and J. marina En5T is 97.2%, and the DNA–DNA relatedness value between the two strains is 23.9%. Strain M1-2T contains MK-6 as the major menaquinone and iso-C15:0, summed feature 3 (C16:1 ω7c and/or iso-C15:0 2OH) and iso-C17:0 3OH as major cellular fatty acids. The DNA G + C content is 32.3 mol%. These data suggest that strain M1-2T should be classified as a novel species, for which the name Joostella atrarenae sp. nov. is proposed. The type strain for the novel species is M1-2T (= KCTC 23194T = NCAIM B.002413T).  相似文献   

10.
A moderately halophilic, Gram-positive, catalase- and oxidase-positive, rod-shaped, aerobic bacterium, designated strain JSM 071068T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the Naozhou Island on the Leizhou Bay in the South China Sea. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 071068T was able to grow with 1–20% (w/v) total salts (optimum, 6–9%), at pH values of 6.0–10.0 (optimum, pH 7.5) and a temperature range of 10–35°C (optimum, 25°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7 and the major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G + C content was 42.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 071068T belonged to the genus Halobacillus. The 16S rRNA gene sequence similarities between strain JSM 071068T and the type strains of the recognized Halobacillus species ranged from 97.9% (with Halobacillus alkaliphilus) to 95.3% (with Halobacillus kuroshimensis). The levels of DNA–DNA relatedness between the new isolate and the type strains of H. alkaliphilus, Halobacillus campisalis, Halobacillus halophilus and Halobacillus seohaensis were 25.6, 22.1, 10.8 and 13.2%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 071068T represents a new species of the genus Halobacillus, for which the name Halobacillus naozhouensis sp. nov. is proposed, with JSM 071068T (=DSM 21183T =KCTC 13234T) as the type strain. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 071068T is EU925615.  相似文献   

11.
A novel Gram-stain-positive, slightly halophilic, facultatively alkaliphilic, non-motile, non-sporulating, catalase-positive, oxidase-negative, aerobic bacterium, designated strain JSM 070026T, was isolated from non-saline forest soil in China. Growth occurred with 0–20% (w/v) NaCl (optimum, 2–4%) and at pH 6.0–10.5 (optimum, pH 8.0) and 5–40°C (optimum, 30°C). Good growth also occurred in the presence of 0–28% (w/v) KCl (optimum, 2–5%) or 0–25% (w/v) MgCl2·6H2O (optimum, 1–4%). The peptidoglycan type was A4α (l-Lys–Gly–l-Glu). Cell-wall sugars contained mannose and xylose. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. Strain JSM 070026T contained menaquinone 8 as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The DNA G + C content of strain JSM 070026T was 56.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JSM 070026T was a member of the suborder Micrococcineae and most closely related to Yaniella flava YIM 70178T (sequence similarity 99.4%) and Yaniella halotolerans YIM 70085T (97.9%). The three strains formed a distinct branch in the phylogenetic tree. The combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the proposal that strain JSM 070026T represents a novel species of the genus Yaniella, for which the name Yaniella soli sp. nov. is proposed. The type strain is JSM 070026T (=DSM 22211T = KCTC 13527T).  相似文献   

12.
A new moderately halophilic sulfate-reducing bacterium (strain H1T) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 μm). Strain H1T grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H1T required salt for growth (1–45 g of NaCl/l), with an optimum at 20–30 g/l. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as terminal electron acceptors but not nitrate and nitrite. Strain H1T utilized lactate, pyruvate, succinate, fumarate, ethanol, and hydrogen (in the presence of acetate and CO2) as electron donors in the presence of sulfate as electron acceptor. The main end-products from lactate oxidation were acetate with H2 and CO2. The G + C content of the genomic DNA was 55%. The predominant fatty acids of strain H1T were C15:0 iso (38.8%), C16:0 (19%), and C14:0 iso 3OH (12.2%), and menaquinone MK-6 was the major respiratory quinone. Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain H1T was affiliated to the genus Desulfovibrio. On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain H1T is proposed to be assigned to a novel species of sulfate reducers of the genus Desulfovibrio, Desulfovibrio legallis sp. nov. (= DSM 19129T = CCUG 54389T).  相似文献   

13.
The taxonomic position of strain DFH11T, which was isolated from coastal seawater off Qingdao, People’s Republic of China in 2007, was determined. Strain DFH11T comprised Gram-negative, motile, strictly aerobic spirilli that did not produce catalase. Comparative 16S rRNA gene sequence analysis revealed that strain DFH11T shared ~97.2, 93.3, 91.8, 91.7 and 91.5% sequence similarities with Oleispira antarctica, Spongiispira norvegica, Bermanella marisrubri, Oceaniserpentilla haliotis and Reinekea aestuarii, respectively. DNA–DNA hybridization experiments indicated that the strain was distinct from its closest phylogenetic neighbour, O. antarctica. The strain grew optimally in 2–3% (w/v) NaCl, at pH 5.0–10.0 (optimally at pH 7.0) and between 0 and 30°C (optimum growth temperature 28°C). The strain exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is consistent with its closest phylogenetic neighbour O. antarctica. Growth of the isolate at different temperatures affected the cellular fatty acid profile. 28°C cultured cells contained C16:1ω7c and/or iso-C15:0 2-OH (50.4%) and C16:0 (19.2%) as the major fatty acids. However, the major fatty acids of the cells cultured at 4°C were C16:1ω7c and/or C16:1ω6c (40.2%), C16:0 (17.2%) and C17:1ω8c (10.1%). The G+C content of the genomic DNA was 42.7 mol%. Phylogeny based on 16S rRNA gene sequences together with data from DNA–DNA hybridization, phenotypic and chemotaxonomic characterization revealed that DFH11T should be classified as a novel species of the genus Oleispira, for which the name Oleispira lenta sp. nov. is proposed, with the type strain DFH11T (=NCIMB 14529T = LMG 24829T).  相似文献   

14.
A Gram-staining positive, endospore-forming, motile and rod-shaped bacterial strain, BR-29T, was isolated from soil from west coast of the Korean peninsula, and its taxonomic position was investigated by a polyphasic study. Strain BR-29T grew optimally at around pH 7.5, at 30°C and in the presence of 0.5% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BR-29T fell into a clade comprising the type strains of Cohnella species, with which it exhibited 16S rRNA gene sequence similarity values of 92.8–96.4%. Strain BR-29T contained a cell wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The major fatty acids were anteiso-C15:0, C16:0 and iso-C16:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol and two unidentified phospholipids; a minor amount of phosphatidylglycerol was present. The DNA G+C content was 54.9 mol%. Strain BR-29T could be differentiated from phylogenetically related Cohnella species by differences in phenotypic characteristics. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BR-29T represents a novel species of the genus Cohnella, for which the name Cohnella boryungensis sp. nov., is proposed. The type strain is BR-29T (= KCTC 13735T = CCUG 59598T).  相似文献   

15.

A Gram-stain-negative, light yellow pigmented, non-motile and aerobic bacterial strain, designated HHU E2-1 T, was isolated from a surface seawater sample. The 16S rRNA gene sequence analysis indicated that HHU E2-1 T shared the highest sequence similarity to the type strain Qipengyuania gaetbuli DSM 16225 T (96.90%), which belongs to the family Erythrobacteraceae. Combined phylogeny of 288 single-copy orthologous gene clusters, analysis of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH), average amino acid identity (AAI) and evolutionary distances suggested that HHU E2-1 T can be considered as a member of the genus Altererythrobacter based on the recently proposed standard for defining genera of Erythrobacteraceae. Strain HHU E2-1 T grew at 15–35 °C and pH 5.0–8.0, with optimum growth at 28 °C and pH 7.0. Tolerance to NaCl was up to 4% (w/v) with optimum growth in 2–3% NaCl. The major fatty acids (>?10%) were C18:1ω7c11-methyl, summed feature 3 (C16:1ω7c and/or C16:1ω6c), and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The predominant isoprenoid quinone was ubiquinone-10. The genomic G?+?C content was 57.40%. On the basis of the phenotypic, phylogenetic and chemotaxonomic characterizations, HHU E2-1 T represents a novel species of the genus Altererythrobacter, for which the name Altererythrobacter flava sp. nov. is proposed. The type strain is HHU E2-1 T (=?CGMCC 1.17394 T?=?KCTC 72835 T?=?MCCC 1K04226T).

  相似文献   

16.
Xie  Fuquan  Pei  Shengxiang  Huang  Xiaoyun  Wang  Lina  Kou  Jinyan  Zhang  Gaiyun 《Antonie van Leeuwenhoek》2021,114(12):2133-2145

A novel Gram-staining positive, aerobic, rod-shaped, non-motile and yellow-pigmented actinobacterium, designated strain WY83T, was isolated from a marine sediment of Indian Ocean. Strain WY83T grew optimally at 30–35 °C, pH 7–8 and with 0–3% (w/v) NaCl. The predominant menaquinones were MK-10, MK-11 and MK-12, and the major fatty acids were C19:1 ω9c/C19:1 ω11c, anteiso-C15:0, C17:0 3OH, and iso-C16:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The cell-wall peptidoglycan contained lysine as a diamino acid. The DNA G?+?C content was 72.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and ninety-two bacterial core genes indicated that strain WY83T formed an evolutionary lineage with Chryseoglobus frigidaquae JCM 14730T, Chryseoglobus indicus CTD02-10-2T, Yonghaparkia alkaliphila JCM 15138T, Microcella alkaliphila DSM 18851T and Microcella putealis DSM 19627T within the radiation enclosing members of the family Microbacteriaceae. All pairwise percentage of conserved proteins between strain WY83T and the closely related phylogenetic neighbors were greater than 65%. The average nucleotide identity and in silico DNA–DNA hybridization values were both below the thresholds used for the delineation of a new species. On the basis of the evidence presented, strains WY83T, Y. alkaliphila JCM 15138T, C. frigidaquae JCM 14730T, M. alkaliphila DSM 18851T and M. putealis DSM 19627T should belong to different species of the same genus. Strain WY83T represents a novel species of the genus Microcella, for which the name Microcella flavibacter sp. nov. is proposed. The type strain is WY83T (=?KCTC 39637T?=?MCCC 1A07099T). Furthermore, Chryseoglobus frigidaquae, Chryseoglobus indicus, and Yonghaparkia alkaliphila were reclassified as Microcella frigidaquae comb. nov., Microcella indica nom. nov., and Microcella alkalica nom. nov., respectively.

  相似文献   

17.
Chen  Ya  Zhang  Ying  Xin  Di  Luo  Xiaonan  Pang  Huancheng  Li  Yuyi  Zhang  Jianli 《Antonie van Leeuwenhoek》2022,115(6):749-760

Strain XBU10T was isolated from a soil sample of a sunflower plot in Inner Mongolia, China. The isolate was a Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, and its colonies were bright yellow in colour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XBU10T belonged to the genus Luteimonas of the family Lysobacteraceae and was most closely related to Luteimonas panaciterrae Gsoil 068T (97.8%), Luteimonas marina FR1330T (97.6%), Luteimonas aquatica RIB1-20T (97.4%) and Luteimonas huabeiensis HB2T (97.2%). Growth occurred at 4–40 °C (optimum, 28–30 °C), with 0–5.0% (w/v) NaCl (optimum, 0.5%) and at pH 6.0–10.0 (optimum, pH 7.0???8.0). The chemotaxonomic characteristics of strain XBU10T, which had Q-8 as its predominant quinone and iso-C17:1 ω9c, iso-C15:0, iso-C17:0 and iso-C16:0 as its major fatty acids, were consistent with classification in the genus Luteimonas. The polar lipid profile of strain XBU10T comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, two unidentified aminophospholipids and three unidentified polar lipids. The genome of strain XBU10T was 4.17 Mbp with a G?+?C content of 69.9%. Its genome sequence showed genes encoding alkaline phosphatase and catalase. Protein-coding genes related to carbohydrate-active enzymes were also observed. Average nucleotide identity (ANI) values between XBU10T and other species of the genus Luteimonas were found to be low (ANIm?<?88.0%, ANIb?<?85.0% and OrthoANIu?<?85.0%). Furthermore, digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values between strain XBU10T and the closely related species ranged from 20.3 to 28.9% and from 64.2 to 82.3%, respectively. Based on the results of our phylogenetic, phenotypic, genotypic and chemotaxonomic analyses, it is concluded that strain XBU10T represents a novel species within the genus Luteimonas, for which the name Luteimonas viscosa sp. nov. is proposed. The type strain is XBU10T (=?CGMCC 1.12158T?=?KCTC 23878T).

  相似文献   

18.

A novel bacterial strain designated CJ43T was isolated from fresh water located in Gangwon-do, South Korea, displaying multi-drug resistance. The isolate was Gram-stain-negative, aerobic, orange-pigmented, and rod-shaped. Strain CJ43T grew optimally at 30 °C and pH 7 on R2A agar in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain CJ43T belonged to the genus Pedobacter in the family Sphingobacteriaceae and was most closely related to Pedobacter puniceum HX-22-1 T and P. glucosidilyticus 1-2 T (98.3 and 98.1% sequence similarity). The genome size of strain CJ43T was 3.9 Mb in a single contig with DNA G?+?C content of 34.9%. The genome included 3144 predicted protein-coding genes, as well as 55 tRNA, 9 rRNA and 3 ncRNA genes. The genome also contained 128 putative antibiotic resistance genes, reflecting its phenotypes. The average nucleotide identity values between strain CJ43T and two closely related strains P. puniceum HX-22-1 T and P. glucosidilyticus 1-2 T were 91.0 and 88.7%, respectively. In silico digital DNA-DNA hybridization results between strain CJ43T and the related strains were 42.8 and 38.6%, respectively. The major fatty acids of strain CJ43T were iso-C15:0, iso-C17:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). Strain CJ43T contained phosphatidylethanolamine as the major polar lipid and menaquinone-7 as the sole respiratory quinone. Based on the polyphasic taxonomy data, strain CJ43T represents a novel species of the genus Pedobacter, for which the name Pedobacter aquae sp. nov. is proposed with the type strain CJ43T (=?KACC 21350 T?=?JCM 33709 T).

  相似文献   

19.
A Gram-stain-negative, non-motile, rod-shaped bacterial strain, JW-64-1T, capable of degrading methamidophos was isolated from a methamidophos-manufacturing factory in China, and was subjected to a polyphasic taxonomic investigation. Strain JW-64-1T produced circular, smooth, transparent, yellow-colored colonies (1.0–2.0 mm) on LB agar after 2 days incubation. It grew optimally at 25–30°C and pH 7.0 without the presence of NaCl. The G+C content of the total DNA was 63.6 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain JW-64-1T fell within the cluster comprising Luteibacter species. The 16S rRNA gene sequence of strain JW-64-1T was most closely related to Luteibacter rhizovicinus DSM 16549T (98.6%), followed by Luteibacter yeojuensis DSM 17673T (98.4%) and L. anthropi CCUG 25036T (98.2%). The major cellular fatty acids of strain JW-64-1T were iso-C15:0 (24.1%), iso-C17:0 (20.2%) and summed feature 9 comprising iso-C17:1 ω9c and/or C16:0 10-methyl (20.3%). The major isoprenoid quinine was Q-8 (98%), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphoaminolipid, aminolipids-1, aminolipids-2, and phospholipids. The values for DNA–DNA relatedness between strain JW-64-1T and the closest phylogenetic relatives of L. rhizovicinus and Luteibacter yeojuensis were 34.8 ± 2.6 and 25.6 ± 3.1%, respectively. On the basis of the phenotypic, chemotaxonomic, DNA–DNA relatedness and phylogenetic analysis based on the 16S rRNA gene sequences, strain JW-64-1T represents a novel species of the genus Luteibacter, for which the name Luteibacter jiangsuensis sp. nov. is proposed. The type strain is JW-64-1T (=CGMCC 1.10133T = DSM 22396T).  相似文献   

20.
A bacterial strain designated antisso-27T, previously isolated from saltpan in Taiwan while screening for bacteria for algicidal activity, was characterized using the polyphasic taxonomic approach. Strain antisso-27T was Gram-negative, aerobic, brownish yellow colored, rod-shaped, non-flagellated and non-gliding. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain antisso-27T belonged to the genus Aquimarina within the family Flavobacteriaceae with relatively low sequence similarities of 94.0–96.6% to other valid Aquimarina spp. It contained iso-C17:0 3-OH, iso-C15:0, iso-C16:0, iso-C15:1 and iso-C15:0 3-OH as the main fatty acids and contained a menaquinone with six isoprene units (MK-6) as the major isoprenoid quinone. Major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, an uncharacterized aminolipid and five uncharacterized phospholipids. Strain antisso-27T employed direct mode of algicidal lysis to Chlorella vulgaris strain 211-31; nevertheless, it released an algicidal substance against M. aeruginosa strain MTY01. This is the first study that the Aquimarina species possesses both direct and indirect algicidal activities. On the basis of the phylogenetic and phenotypic data, strain antisso-27T should be classified as representing a novel species, for which the name A. salinaria sp. nov. is proposed. The type strain is A. salinaria antisso-27T (= BCRC 80080T = LMG 25375T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号