首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Copper deficiency was studied in mice to investigate an interaction between copper and ascorbic acid. Twelve-day-old mutant brindled mice that exhibited signs of copper deficiency were compared to their normal brothers as well as to age-matched suckling mice that were copper deficient (-Cu) because their dams were consuming a copper-deficient diet throughout gestation and lactation, and a fourth group of copper-supplemented ( + Cu) suckling mice that served as dietary controls. Dietary copper deficiency was also produced in older mice by beginning the treatment at birth and continuing for 7 wk. Organ ascorbate levels were determined by high performance liquid chromatography with electrochemical detection. Differences caused by diet and genetics were evident but age-dependent. Compared to controls, liver and kidney ascorbate levels did not change remarkably in young or old copper-deficient mice. Cardiac ascorbate levels were higher in 7-wk-old - Cu mice and lower in 12-d-old - Cu mice, despite hypertrophy in both cases. Spleen ascorbate levels were lower in older -Cu mice and higher in 12-d-old mice, but total spleen ascorbate reflected the hypertrophic and atrophic size in the older and younger -Cu mice, respectively. Brindled mutants had an extremely low level of ascorbate in spleen. Plasma ascorbate was lower in 7-wk-old - Cu mice. Reasons for the alterations in ascorbate levels are not known. Synthesis in liver from D-glucuronate was not altered by dietary copper deficiency in 7-wk-old mice. Synthesis was lower in livers from 12-d-old - Cu and brindled mice compared to control values. However, the difference correlated better with body weight of the mice rather than with degree of copper deficiency. Consequences of the altered organ levels of ascorbate in copper-deficient mice are not completely known.  相似文献   

2.
Previous studies have shown that cardiac-specific overexpression of metallothionein (MT) inhibits progression of dietary copper restriction-induced cardiac hypertrophy. Because copper and zinc are critically involved in myocardial response to dietary copper restriction, the present study was undertaken to understand the effect of MT on the status of copper and zinc in the heart and the subsequent response to dietary copper restriction. Dams of cardiac-specific MT-transgenic (MT-TG) mouse pups and wild-type (WT) littermates were fed copper-adequate (CuA) or copper-deficient (CuD) diet starting on the fourth day post delivery, and the weanling mice were continued on the same diet until they were sacrificed. Zinc and copper concentrations were significantly elevated in MT-TG mouse heart, but the extent of zinc elevation was much more than that of copper. Dietary copper restriction significantly decreased copper concentrations to the same extent in both MT-TG and WT mouse hearts, and decreased zinc concentrations along with a decrease in MT concentrations in the MT-TG mouse heart. Copper deficiency-induced heart hypertrophy was significantly inhibited, but copper deficiency-induced suppression of serum ceruloplasmin or hepatic Cu,Zn-SOD activities was not inhibited in the MT-TG mice. These results suggest that elevation in zinc but not in copper in the heart may be involved in the MT inhibition of copper deficiency-induced cardiac hypertrophy.  相似文献   

3.
The present study was designed to determine whether the supplementation of vitamin E in the copper-deficient diet would ameliorate the severity of copper deficiency in fructose-fed rats. Lipid peroxidation was measured in the livers and hearts of rats fed a copper-deficient diet (0.6 microg Cu/g) containing 62% fructose with adequate vitamin E (0.1 g/kg diet) or supplemented with vitamin E (1.0 g/kg diet). Hepatic lipid peroxidation was significantly reduced by vitamin E supplementation compared with the unsupplemented adequate rats. In contrast, myocardial lipid peroxidation was unaffected by the level of vitamin E. Regardless of vitamin E supplementation, all copper-deficient rats exhibited severe signs of copper deficiency, and some of the vitamin E-supplemented rats died of this deficiency. These findings suggest that although vitamin E provided protection against peroxidation in the liver, it did not protect the animals against the severity of copper deficiency induced by fructose consumption.  相似文献   

4.
Copper deficiency lowers brain copper and iron during development. The reduced iron content could be due to hypoferremia. Experiments were conducted to evaluate plasma iron and “ferroxidase” hypotheses by determining copper and iron status of Holtzman albino rats following gestational/lactational copper deficiency. Copper deficient (Cu−) dams on treatment for 5 weeks, two of gestation and three of lactation, had markedly lower copper content of milk and mammary tissue, and lower milk iron. Newborn pups from Cu− dams had lower copper and iron concentrations. Compared to Cu+ pups, Cu− pups, analyzed between postnatal age (P) 0 and P26, were smaller, anemic, had lower plasma iron, cardiac hypertrophy, and near zero ceruloplasmin activity. Liver copper in Cu+ pups increased then decreased during development and major reductions were evident in Cu− pups. Liver iron in Cu+ pups decreased with age while nursing but increased after eating solid food. Liver iron was lower in Cu− pups at P0 and P13 and normal at P20 and P26. Small intestinal copper decreased with age in Cu+ pups and was lower in Cu− pups. Intestinal iron levels in Cu− pups were higher than Cu+ pups postweaning in some experiments. Reduction in plasma iron in Cu− pups is likely due to a decreased “ferroxidase” function leading to lower placental iron transport, a lower milk iron diet, and partial block in iron uptake from intestine but is not due to failure to mobilize hepatic iron, in contrast to older rats eating diet with adequate iron.  相似文献   

5.
Weanling albino male mice rapidly develop biochemical signs of copper deficiency when fed a purified diet containing 0.5 mg Cu/kg. Plasma ceruloplasmin activity of copper-deficient (-Cu) mice was 5% of that of copper-adequate (+Cu) control mice after only 3 d on the diet. More gradual loss of organ (liver, spleen, and thymus) cytochrome c oxidase activity was observed during the next 4 wk. Body weight was equivalent between +Cu and -Cu mice, but thymus weight dropped faster in -Cu mice than +Cu mice. The number of antibody producing cells to sheep erythrocytes was lower in -Cu mice compared to +Cu mice after 17 d on the diet. Spleen cytochrome oxidase activity of -Cu mice was 50% of that of +Cu mice by 10 d on the diet. Mitogenic response of splenic and thymic lymphocytes to concanavalin A (con A) was not greatly different between +Cu and -Cu mice. Splenocytes from -Cu mice had a 3-fold higher thymidine incorporation rate in the absence of mitogen compared to +Cu mice. The depressed antibody and high mitogenic background responses of -Cu mice were similar to previous work with another strain (C58) of mice that had been started on copper-deficient treatment from birth. However, the normal proliferative response to con A stimulation in postweaning copper deficiency differs from the previous model. Mice of both studies were very copper-deficient as judged by liver copper levels. Timing of the copper-deficient treatment influences the manner in which copper deficiency alters the immune response.  相似文献   

6.
7.
Dietary copper deficiency increases the accumulation of circulating neutrophils in the rat lung microcirculation. This process includes neutrophil adhesion to, migration along, and emigration though the vascular endothelium. The current study was designed to examine the role of copper in each of these steps. Neutrophils were isolated from rats fed either a copper-adequate (CuA, 6.1 microg Cu/g diet) or copper-deficient diet (CuD, 0.3 microg Cu/g diet) for 4 weeks. First, transient and firm adhesion of neutrophils to P-selectin in a flow chamber showed there were more adhered CuD neutrophils than CuA ones. This effect is probably caused by the increased expression of CD11b that was observed in the current study. Second, the evaluation of neutrophil migration under agarose showed that the CuD neutrophils moved farther than the CuA group in response to IL-8 but not fMLP; this suggests an increased sensitivity to a CD11/CD18-independent signalling pathway. Third, the contractile mechanism of endothelial cells was studied. Elevated F-actin formation in Cu-chelated lung microvascular endothelial cells suggests that neutrophil emigration may be promoted by enhanced cytoskeletal reorganization of the endothelium during copper deficiency. Combined, these results support the theory that dietary copper deficiency has proinflammatory effects on both neutrophils and the microvascular endothelium that promote neutrophil-endothelial interactions.  相似文献   

8.
An eight-week, 2 x 4 factorial rat experiment using two levels of dietary copper and four levels of dietary silicon was conducted to further delineate a previously observed silicon-copper interaction in which silicon appears to mimic copper in its effect on the composition of the aorta. Dietary copper concentrations were 1.4 (deficient) and 5.4 (adequate) mg/kg diet, and silicon concentrations were 5, 135, 270, and 540 mg/kg diet. Compared with the lowest level of silicon and copper, weight gains were 15.5% higher for rats fed 540 mg silicon/kg diet and 14.3% higher for those fed 5.4 mg copper/kg diet. The growth-promoting effects of silicon and copper were additive. Evidence that silicon elevated the copper status of copper-deficient rats includes an increase in packed-cell volume by 540 mg silicon/kg diet in the otherwise packed-cell volume-depressed, copper-deficient rats, accompanied by a trend toward higher hemoglobin values and lower relative heart weights. In the copper-adequate rats, evidence that 540 mg silicon/kg diet elevated their copper status includes a two-fold increase in the blood-plasma copper concentration, a three-fold increase in ceruloplasmin activity, and an increase in cardiac, renal, and hepatic copper concentrations. In addition, 540 mg silicon/kg diet resulted in higher aortic dry mass and aortic elastin content in both copper-deficient and copper-adequate rats. While dietary silicon concentrations of 135, 270, and 540 mg/kg diet were all effective in increasing aortic elastin in the copper-adequate rats, only 540 mg silicon/kg diet increased aortic elastin in the copper-deficient rats. These data indicate that some of the metabolic effects attributed to silicon may be manifested through a silicon-facilitated increase in copper utilization.  相似文献   

9.
Dietary copper is an essential trace element with roles in both functional and structural aspects of the cardiovascular system. In particular, the vascular response to inflammatory stimuli is known to be significantly augmented in copper-deficient rats. The current study was designed to quantify the extent of injury-induced neointimal proliferation and stenosis in rats fed diets either adequate or deficient in copper. Male, weanling Sprague-Dawley rats were fed purified diets that were either adequate (CuA; 5.6 microg Cu/g) or deficient (CuD; 0.3 microg Cu/g) in copper for 4 weeks. Balloon injury was induced in the left external carotid arteries. Fourteen days after injury, histomorphometric analysis of cross-sections from carotid arteries showed increased neointimal formation in the CuD group compared with the CuA controls (neointima/media ratio: 4.55 +/- 0.93 vs 1.45 +/- 0.2, respectively). These results correspond with data indicating that the activity of Cu/Zn-superoxide dismutase (SOD) is depressed in rats fed this CuD diet. Because superoxide anion and redox status are known to play a key role in the extent of neointimal formation in response to injury, we propose that the exaggerated neointimal proliferation seen in the CuD group is the result of the diminished Cu/Zn-SOD activity.  相似文献   

10.
The purpose of this study was to determine the relationship between concentrations of Zn and Cu and the activities of superoxide dismutase and glutathione peroxidase in the heart and liver of young rat pups whose dams were fed a diet supplemented with caffeine and/or Zn. Four groups of dams with their newborn pups were fed one of the following diets for 22 d: 20% protein basal diet; the basal diet supplemented with caffeine (2 mg/100 body wt); the basal diet supplemented with Zn (300 mg/kg diet); or the basal diet supplemented with caffeine plus Zn. The Cu levels in the livers of the pups were decreased by maternal intake of the caffeine and Zn diet. The maternal intake of the caffeine diet increased Mn-superoxide dismutase (MnSOD) activity and Cu, Zn-superoxide dismutase (CUZnSOD) in the heart of the pups. On the other hand, the activity of Cu,ZnSOD was significantly reduced in the liver of pups whose dams consumed a caffeine, Zn, or caffeine plus Zn diet. Cu, ZnSOD activity in the liver of the pups seems to be correlated with Cu levels in the tissue. Selenium-dependent glutathione peroxidase (GSH-Px) activities in the heart and liver showed no difference among the groups. The effect of dietary caffeine and/or Zn on the activity of antioxidant enzymes in the heart and liver were different in young rats. The activities of these enzymes in the heart were lower than in the liver of 22-d-old rats. Our experiments indicate that the heart has limited defenses against the toxic effects of peroxides when compared to the liver.  相似文献   

11.
Dietary lipid quantity and quality have recently been shown to affect serum leptin levels in adult rats. Moreover, suckling pups from dams fed a high fat diet had increased serum leptin levels. The aim of the present study was to analyze the influence of essential fatty acid (EFA) deficiency on serum leptin levels in dams and their pups during the suckling period. For the last 10 days of gestation and throughout lactation, pregnant rats were fed a control or an EFA-deficient (EFAD) diet. The levels of leptin and EFA in the serum of the dams and pups were analyzed 1, 2, and 3 weeks after delivery. In parallel, serum levels of glucose and corticosterone were analyzed in the pups. Low serum leptin levels were found in the control lactating dams during the entire lactation period compared with the age-matched nonlactating animals. The leptin concentrations in the lactating dams fed the EFAD diet were lower compared with those fed the control diet. The serum leptin levels of suckling pups from dams on the EFAD diet were markedly decreased compared with controls (P < 0.05). The reduced serum leptin levels could not be explained by nutritional restriction as evaluated by serum levels of glucose and corticosterone. These results indicate the importance of the EFA composition of the maternal diet for serum leptin levels in both dams and pups. EFA deficiency in lactating dams may cause long-term effects on the pups through dysregulation of leptin and leptin-dependent functions. -- Korotkova, M., B. Gabrielsson, L. A. Hanson, and B. Strandvik. Maternal essential fatty acid deficiency depresses serum leptin levels in suckling rat pups. J. Lipid Res. 2001. 42: 359--365.  相似文献   

12.
Although cytochrome-c oxidase (CCO) is a copper-dependent enzyme, the effect of maternal copper deficiency on the expression of CCO activity during postnatal development of the neonatal rat heart has not been investigated extensively. Here, we show that CCO activity in heart mitochondria isolated from neonates of copper-deficient dams did not exhibit significant reductions until postnatal days (PND) 15 and 21. In addition, immunoblot analysis indicated that the CCO subunit (Cox-1) was reduced on postnatal Days 10 and 21, and that Cox-4 was reduced on PND 21 in heart mitochondria of the neonates from copper-deficient dams. These findings indicate that the impairment of CCO activity in neonatal heart by maternal copper deficiency occurs late in the postnatal heart development. Furthermore, the concurrent reductions in Cox-1 and Cox-4 suggest that the impaired CCO activity reflects a CCO deficiency in heart mitochondria. CCO activity and Cox-1 in heart mitochondria were not fully restored by 6 weeks of postweaning copper repletion in the pups of copper-deficient dams. This indicates that prolonged maternal intake of moderately low dietary copper produces CCO deficiency in cardiac mitochondria of neonates during late postnatal heart development, after terminal differentiation of cardiomyocytes occurs. The resistance of CCO deficiency to repair by dietary copper supplementation may be related to the relatively slow turnover of the affected mitochondria in the terminally differentiated heart.  相似文献   

13.
Ceruloplasmin (Cp) is a multicopper oxidase and the most abundant copper binding protein in vertebrate plasma. Loss of function mutations in humans or experimental deletion in mice result in iron overload consistent with a putative ferroxidase function. Prior work suggested plasma may contain multiple ferroxidases. Studies were conducted in Holtzman rats (Rattus norvegicus), albino mice (Mus musculus), Cp?/? mice, and adult humans (Homo sapiens) to investigate the copper–iron interaction. Dietary copper-deficient (CuD) rats and mice were produced using a modified AIN-76A diet. Results confirmed that o-dianisidine is a better substrate than paraphenylene diamine (PPD) for assessing diamine oxidase activity of Cp. Plasma from CuD rat dams and pups, and CuD and Cp?/? mice contained no detectable Cp diamine oxidase activity. Importantly, no ferroxidase activity was detectable for CuD rats, mice, or Cp?/? mice compared to robust activity for copper-adequate (CuA) rodent controls using western membrane assay. Immunoblot protocols detected major reductions (60–90%) in Cp protein in plasma of CuD rodents but no alteration in liver mRNA levels by qRT-PCR. Data are consistent with apo-Cp being less stable than holo-Cp. Further research is needed to explain normal plasma iron in CuD mice. Reduction in Cp is a sensitive biomarker for copper deficiency.  相似文献   

14.
The toxic effect of vanadium (sodium metavanadate) during pregnancy and lactation was studied by feeding vanadium to pregnant, Sprague-Dawley rats at levels of 1 (control) or 75 μg V/g diet through d 21 postpartum, at which time they were killed. Vanadium-fed dams had lower food intakes and weight gains than controls during pregnancy. Survival until d 21 postpartum was significantly lower in the vanadium pups compared to controls. In addition, the surviving pups gained less weight than control pups, despite similar birth weights. On a relative body weight basis, vanadium pups had larger livers, brains, and testes than controls, suggesting that these animals were developmentally delayed. Vanadium dams and pups had higher concentrations of hepatic vanadium than controls. Vanadium pups also had higher concentrations of hepatic zinc than control pups. Maternal hepatic zinc concentrations were not affected by diet. Also, no significant differences in hepatic iron, copper, or manganese concentrations were observed for either dams or pups. Hepatic thiobarbituric acid reactivity was higher in whole cell and isolated mitochondria for vanadium dams and pups than for control dams and pups, indicating that these animals may have had higher levels of lipid peroxidation. This idea was supported by the observation of lower concentrations of reduced glutathione in the livers of vanadium pups compared to controls. In contrast, kidney and brain glutathione levels were not affected by diet. In conclusion, animals during periods of rapid growth are susceptible to vanadium toxicity, and increased lipid peroxidation may be one factor underlying this toxicity.  相似文献   

15.
Weanling male rats were fed a copper-deficient diet devoid of cholesterol. The effects of varying the source of carbohydrate and supplements of copper and zinc on cardiovascular pathology and some biochemical and physiological parameters were investigated. It was found that cardiomyopathy developed in copper-deficient groups. Sucrose, in contrast to starch or starch:lactose (1:1), caused significant exacerbation of this situation. Increasing dietary Cu to 8 ppm prevented or minimized the development of cardiomyopathy. Angiopathy occurred only when dietary zinc was at the lower level (20 ppm). Dietary copper supplements to 8.0 ppm did not alter this situation, but 120 ppm Zn in the drinking water did reduce the angiopathy almost to the control level, except in the groups in which sucrose was fed. Serum cholesterol was only elevated significantly over the control value when dietary copper was deficient and sucrose was the carbohydrate source. The data point to independent action of dietary copper or zinc on the myocardium or vessels, respectively, with sucrose interacting to make copper and zinc supplements less active than when starch or starch/lactose was fed.  相似文献   

16.
To assess the interaction of 1,25(OH)(2)D(3) and dietary calcium on mammary calcium transport in lactating dams and skeletal growth and turnover in the neonate, female lactating 1α(OH)ase(+/-) or 1α(OH)ase(-/-) mice were fed either a high-calcium diet containing 1.5% calcium in the drinking water or a "rescue diet." Dietary effects on the expression of molecules mediating mammary calcium transport were determined in the dams, and the effects of milk calcium content were assessed on skeletal growth and turnover in 2-wk-old 1,25(OH)(2)D(3)-deficient pups. Results showed that the reduction of milk calcium levels in the 1α(OH)ase(-/-) dams and the elevation of milk calcium levels in dams fed the rescue diet were associated with the down- or upregulation of calbindin D(9k) and plasma membrane Ca(2+) ATPase isoform 2b expression, respectively, in mammary epithelial cells. The action of ambient calcium in stimulating skeletal growth in the neonates appeared to supercede the direct action of 1,25(OH)(2)D(3), and the response of chondrocytes in the neonates to elevated calcium was more sensitive in hypocalcemic animals. Osteopenia was more apparent in pups nursed by dams with lower milk calcium than in 1,25(OH)(2)D(3)-deficient pups nursed by dams with higher milk calcium. Bone formation parameters were increased significantly in all pups fed by dams on the rescue diet but were still lower in 1α(OH)ase(-/-) pups than in 1α(OH)ase(+/-) pups. Consequently, there is an important contributory role of calcium in conjunction with 1,25(OH)(2)D(3) to mammary calcium transport in lactating dams and skeletal growth and turnover in the neonate.  相似文献   

17.
Copper deficiency results in defective elastin and collagen maturation in most tissues. A close relationship also exists between these components and proteoglycans in connective tissue. In an effort to obtain information on the nature of proteoglycans in copper deficiency, the composition of glycosaminoglycans in lungs from copper-deficient (1 micrograms/g of diet) or -supplemented (25 micrograms/g diet) chicks was studied. The total glycosaminoglycan concentration in copper-deficient chick lungs did not differ from that in control chick lungs. However, variations in individual glycosaminoglycan concentrations between lungs from copper-deficient and -supplemented chicks were observed. Heparan sulfate and dermatan sulfate concentrations were lower in copper-deficient chick lungs than in controls. The glycosaminoglycans from lungs of copper-deficient chicks also had lower molecular weights than glycosaminoglycans from lungs of control birds.  相似文献   

18.
Iron homeostasis depends on adequate dietary copper but the mechanisms are unknown. Mice (Mus musculus) and rat (Rattus norvegicus) offspring were compared to determine the effect of dietary copper deficiency (Cu-) on iron status of plasma, liver, brain and intestine. Holtzman rat and Hsd:ICR (CD-1) outbred albino mouse dams were fed a Cu- diet and drank deionized water or Cu supplemented water. Offspring were sampled at time points between postnatal ages 13 and 32. Cu- rat and mouse pups were both anemic, but only rat pups had lower plasma and brain iron levels. Plasma iron was lower throughout the suckling period in Cu- rats but not Cu- mice. Cu- mice derived from dams restricted of Cu only during lactation were also severely anemic without hypoferremia. Intestinal metal analysis confirmed that Cu- pups had major reductions in intestinal concentration of Cu, increased Fe, and normal Zn. However, whole mouse (less the intestine) analysis demonstrated normal content of Fe indicating that the limitation in iron transport by intestinal hephaestin had no consequence to total iron reserves of the mouse. Further research will be needed to determine the reason Cu- mice were anemic since the "ferroxidase" hypothesis does not explain this phenotype.  相似文献   

19.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

20.
In an attempt to identify a sensitive and improved marker of mammalian copper status during neonatal development experiments compared two plasma cuproenzymes, peptidylglycine alpha-amidating monooxygenase (PAM ), an enzyme involved in peptide posttranslational activation, to ceruloplasmin (Cp), a ferroxidase involved in iron mobilization. Dietary Cu deficiency (Cu-) was studied in dams and offspring at postnatal age 3 (P3), P12, and P28. Rodent Cp activity rose during lactation whereas PAM activity fell. Reduction in Cp activity was more severe than reduction in PAM activity in Cu- offspring and dams. Cp activity was greater in rats than mice whereas PAM activity was similar in adults but greater in mouse than rat pups. Both cuproenzymes changed during neonatal development and when dietary copper was limiting. With proper controls, each enzyme can be used to assess copper status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号