首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of sand lizards (Lacerta agilis) are declining throughout its north-western range. Here we characterize fifteen new microsatellite markers developed specifically for parentage analysis in a small Swedish population of sand lizards. These loci were screened in the Asketunnan population and a much larger and genetically diverse Hungarian population, with heterozygosities ranging from (0.217–0.875) and (0.400–0.974), respectively. All loci were in Hardy-Weinberg Equilibrium in the Swedish population but eight loci had significant heterozygote deficiencies in the Hungarian population. Two loci were significantly linked in both populations. These microsatellite loci are likely to be applicable in research on other sand lizard populations throughout Europe. An erratum to this article can be found at  相似文献   

2.
The Swedish sand lizard ( Lacerta agilis ) is a relict species from the post-glacial warmth period. From the geological history of this region, and more recent data on population fragmentation due to disturbance by man, it can be surmised that the Swedish sand lizards passed through at least one population bottleneck in relatively recent times. We tested this hypothesis by investigating the amount and structuring of genetic variability in six microsatellite loci in ten lizard populations from different parts of Sweden. We contrasted these data against those from a Hungarian population which we have reason to assume strongly resembles the founder population for Swedish sand lizards. The average number of alleles per locus in Sweden was 3.3, and these alleles were common in almost all populations, whereas the average number of alleles in the Hungarian population was 8.0. Likewise, the level of expected heterozygosity was lower in the Swedish populations (0.45) compared to the Hungarian population (0.70). The lower variability in Swedish populations is probably a consequence of a common population bottleneck during the immigration subsequent to the latest glacial period. The remaining variability is strongly subdivided between populations (FST=0.30) with the main genetic differences being between rather than within populations. Despite the marked isolation of the populations and the present small population sizes (N= 10–300 adults), the Swedish relict populations show a surprisingly high level of observed heterozygosity, indicating that small population size is probably a recent phenomenon.  相似文献   

3.
The Swedish sand lizard (Lacerta agilis) is a relict species from the period of warmth following the last glacial episode and has a fragmented distribution in central Sweden and a more continuous distribution in the southern part of the country. We used this model system of colonization–extinction for a study of genetic variability within and among Swedish populations from different parts of the distribution range using multilocus DNA fingerprinting. The results from the Swedish populations are then contrasted with those from a large Hungarian population in the centre of the species geographical distribution range, which is likely to closely resemble the ancestral founding population of Sweden. Swedish populations have a low level of genetic variability compared with the Hungarian reference population, which showed a genetic variability within the range described for outbred populations. Within the Swedish populations, the average bandsharing was 0.61, the mean heterozygosity 0.45 and the estimated number of alleles 2.7. The figures for the Hungarian population were a bandsharing of 0.19, a heterozygosity of 0.89 and an estimated number of alleles of 9.8. A population bottleneck, common to all Swedish sand lizards, is indicated by less than 20% of the alleles in the Hungarian population being retained in the Swedish populations, and higher bandsharing similarity between different Swedish populations (0.33) as opposed to the Hungarian population (0.19). The limited variability found in Swedish sand lizards is strongly subdivided between populations, with an average FST of 0.32, indicating a very limited gene flow between the isolated populations, as well as between populations in the region where the sand lizard has a more or less continuous distribution (FST = 0.41).  相似文献   

4.
We developed microsatellite markers for the sand lizard (Lacerta agilis) to enable investigations of the genetic variability within and among populations with a heterogeneous spatial distribution in Sweden. The populations, which could not be characterized by variation in allozymes or mitochondrial DNA, had a substantial level of variability in microsatellite loci. However, the variability in Swedish populations was limited compared to a large, outbred Hungarian population. In the sand lizard, the number of (GT/CA) n repeats was approximately three times higher than that for (CT/GA) n. The number of repeats and the frequency of microsatellites were within the range reported for other species. Three of nine microsatellite loci showed alleles that could not be amplified, which is in agreement with recent reports describing microsatellite “null alleles” as a common occurrence. We discuss the caution which this calls for when calculating paternity probabilities and when estimating between-population allelic differentiation. A potential problem with different mutation rates for alleles within the same locus is discussed.  相似文献   

5.
We describe the isolation of microsatellite loci from Galápagos lava lizards (Microlophus spp.) using an enriched genomic library. Twelve loci that are polymorphic among six populations from two species are described. Characterization of these loci in 20 individuals within one population (Isla Plaza Sur) showed seven to be polymorphic with 3–11 alleles. Heterozygosities within this population were high (0.32–0.90) and did not deviate from Hardy–Weinberg expectations. We suggest that these markers will be useful in studies of population differentiation within and among islands across the Galápagos archipelago.  相似文献   

6.
The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy–Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7–36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior to microsatellite development. The rapid identification and validation of microsatellite loci using next-generation sequencing technology warrant its integration into future microsatellite loci development for key aquaculture species in Vietnam and more generally, aquaculture countries in the South East Asia region.  相似文献   

7.
Loss of genetic variation from genetic drift during population bottlenecks has been shown for many species. Red deer (Cervus elaphus) may have been exposed to bottlenecks due to founder events during postglacial colonisation in the early Holocene and during known population reductions in the eighteenth and nineteenth centuries. In this study, we assess loss of genetic variation in Scandinavian red deer due to potential bottlenecks by comparing microsatellite (n = 14) and mitochondrial DNA variation in the Norwegian and Swedish populations with the Scottish, Lithuanian and Hungarian populations. Bottlenecks are also assessed from the M ratio of populations, heterozygosity excess and from hierarchical Bayesian analyses of their demographic history. Strong genetic drift and differentiation was identified in both Scandinavian populations. Microsatellite variation was lower in both Scandinavian populations compared with the other European populations and mitochondrial DNA variation was especially low in the Swedish population where only one unique haplotype was observed. Loss of microsatellite alleles was demonstrated by low M ratios in all populations except the Hungarian. M ratios’ were especially low in the Scandinavian populations, indicating additional or more severe bottlenecks. Heterozygosity excess compared with the expectation from the number of observed microsatellite alleles suggested a recent bottleneck of low severity in the Norwegian population. Hierarchical Bayesian coalescent analyses consistently yielded estimates of a large ancestral and a small current population size in all investigated European populations and suggested the onset of population decline to be between 5,000 and 10,000 years ago, which coincide well with postglacial colonisation.  相似文献   

8.
Tree lizards (Urosaurus ornatus) are a highly accessible species useful in testing theories of life-history evolution and behavioural ecology. A polymerase chain reaction-based method was used to isolate nine polymorphic tetranucleotide microsatellite loci from the genome of these lizards. The isolated loci displayed 5 to 9 alleles in the populations screened. Observed heterozygosity ranged from 0.333 to 0.900. Results indicate these loci now provide a basis to study mate choice, parentage, and population genetic structure within this species.  相似文献   

9.
Twelve tetra‐ and di–tetra compound microsatellite loci are described for the rainbow smelt (Osmerus mordax). These loci were screened among a minimum of 79 individuals and the average number of alleles per locus was 16 with an average heterozygosity of 0.86. These microsatellites are being used to examine population structure and life‐history evolution among natural populations of rainbow smelt.  相似文献   

10.
We isolated and characterized polymorphic microsatellite loci in Lithocarpus glaber (Fagaceae), an evergreen broadleaved monoecious tree, to provide tool for analyzing genetic structure and diversity. Thirteen polymorphic microsatellite loci were developed and tested in two L. glaber populations. The number of alleles per locus varied from 2 to 19. The observed and expected heterozygosities within populations were 0.037–0.833 and 0.316–0.931, respectively. Four loci significantly deviated from Hardy–Weinberg equilibrium after Bonferroni correction in each population and no significant linkage disequilibrium between pairs of loci was found. These polymorphic loci showed high levels of polymorphism within tested populations and will be useful in further population genetic studies.  相似文献   

11.
We isolated and characterized microsatellite loci in Viola mirabilis (Violaceae), an endangered species from South Korea. Twenty‐three polymorphic microsatellite loci were developed and tested in Korean, Chinese and Japanese populations. The number of alleles per locus varied from two to eight. The observed and expected heterozygosities within the three populations were 0.000–0.625 and 0.469–0.695, respectively. A total of six loci in the Korean population, one locus in the Chinese population and seven loci in the Japanese population deviated from Hardy–Weinberg equilibrium. We expect that these newly developed microsatellite markers will contribute to understanding the phylogeography and population genetics of V. mirabilis, which will aid in developing conservation strategies for this species.  相似文献   

12.
A total of 15 microsatellite primer pairs were developed from the Mountain Log Skink, Pseudemoia entrecasteauxii. Nine were used to screen 46 individuals from four populations, and a representative from P. spenceri and P. pagenstecheri. Seven of the loci exhibited large allele variation (16–30) and high heterozygosity (0.24–0.82), and the three populations were genetically differentiated. The markers were also used to screen 36 clutches of known maternity and identified high levels of multiple paternity clutches (57%). The primers developed will provide useful markers for the study of population biology and mating system of these lizards.  相似文献   

13.
We characterized microsatellite loci for the sand skink (Neoseps reynoldsi) for future studies of genetic structure in this threatened taxon. We screened a partial genomic library enriched for microsatellites, designed primers for eight loci and assessed these markers for polymorphism across 11 populations in central Florida. Preliminary analyses indicate deviations from Hardy–Weinberg expectations for most loci, suggesting population genetic structure across the sampled populations; therefore, understanding genetic connectivity is critical for maintaining genetic variation in this species.  相似文献   

14.
Using five microsatellite loci, genotyping and genetic diversity estimates were obtained for nine samples representing seven common carp breeds most widespread in Russia. For comparison, the samples of Amur wild common carp (Cyprinus carpio haematopterus) and a sample of European Hungarian carp were used. In the samples examined (n = 148) a total of 78 alleles were revealed. The highest mean allele number per locus (7.3) was identified in Amur wild common carp, while the lowest number was found in Cherepets carps (4.0). In different breeds, the observed heterozygosities varied from 0.819 (Altai carp) to 0.651 (Cherepets scaly carp). Three out of five microsatellite loci (MFW-24, MFW-28, and MFW-19) revealed a high level of population differentiation. In the dendrogram of genetic differences, all breeds clustered into two groups. One of these groups was composed of the two strains of Ropsha carp, Stavropol carp, Amur wild common carp, and the two samples of Cherepets carp. The second cluster included Altai carp (Priobskii and Chumysh populations), two Angelinskii carp breeds (mirror and scaly), and Hungarian carp. The pairs of breeds/populations/strains, having common origin, were differentiated. Specifically, these were two populations of Altai carp, two strains of Ropsha carp, as well as the breeds of Angelinskii and Cherepets carps. The reasons for genetic differentiation of Russian common carp breeds, as well as the concordance of the evolutionary histories of these breeds, some of which originated from the European breeds, while the others contain substantial admixture of the Amur wild common carp, are discussed.  相似文献   

15.
The reintroduction of wild boar from central Europe after World War II has contributed substantially to the range expansion of this species in Italy, where indiscriminate hunting in earlier times resulted in extreme demographic reduction. However, the genetic impact of such processes is not well-understood. In this study, 105 individuals from Italian and Hungarian wild boar populations were characterized for nine autosomal microsatellite loci. The Hungarian samples, and two central Italian samples from protected areas (parks) where reintroduction is not documented, were assumed to be representative of the genetic composition of the source and the target populations in the reintroduction process, respectively. Animals hunted in the wild in the Florence area of Tuscany (Italy) were then studied to identify the effects of reintroduction. The results we obtained can be summarized as follows: (i) none of the populations analysed shows genetic evidence of demographic decline; (ii) the three parental populations from Italy and Hungary are genetically distinct; however, the low level of divergence appears in conflict with the naming of the Italian and the European subspecies (Sus scrofa majori and Sus scrofa scrofa, respectively); in addition, the Italian groups appear to be as divergent from each other as they are from the Hungarian population; (iii) most of the individuals hunted near Florence are genetically intermediate between the parental groups, suggesting that hybridization has occurred in this area, the average introgression of Hungarian genotypes is 13%, but approximately 45% of the genetic pool of these individuals can not be directly attributed to any of the parental populations we analysed; (iv) analysis of microsatellite loci, though in a limited number, is an important tool for estimating the genetic effect of reintroduction in the wild boar, and therefore for the development of conservation and management strategies for this species.  相似文献   

16.
We identified 11 polymorphic microsatellite loci in collared lizards (Crotaphytus collaris). Polymorphism assessment in 512 individuals from 52 populations sampled across much of the species distribution revealed a fairly high degree of genetic diversity (six to 20 alleles per locus) and a wide range of average expected heterozygosity values (0.143–0.530). We found no evidence for linkage, very few deviations from HW expectation (two of 572 possible population/locus analyses) and thus no evidence for null alleles. There was a tendency for reduced polymorphism towards the northern periphery.  相似文献   

17.
To assess mechanisms of hybridization and speciation, we isolated and characterized 12 dinucleotide microsatellite DNA loci for the toad‐headed lizards, Phrynocephalus przewalskii complex. A total of 48 specimens were examined and all loci were polymorphic with seven to 25 alleles per locus. The observed and expected heterozygosities ranged from 0.282 to 0.946 and 0.400 to 0.937, respectively. These loci are therefore suitable for a wide range of population level studies within the P. przewalskii complex.  相似文献   

18.
High-throughput RNA-Seq affords a cost and time effective means of obtaining large numbers of genetic markers for aquatic genomics. Here, we present thousands of novel microsatellite loci developed for the pearl oyster, Pinctada martensii from the Illumina HiSeq™ 2000 library of the pearl sac. Free user-friendly bioinformatics tools were employed to screen for microsatellite loci and design appropriate primers in 102,762 unigenes with 7216 microsatellite loci identified in total, 4862 of which had flanking sequences suitable for polymerase chain reaction primer design. The 50 randomly chosen primer pairs were tested in two populations of pearl oyster (base population (POP1) and selected population (POP2), with 30 individuals of each population). All the primer pairs were amplified successfully in two populations. All loci were polymorphic in POP1, while there were 3 loci showing monomorphism in POP2. In POP1 and POP2, observed heterozygosity from 0.033 to 1.000 and 0.000 to 1.000, 19 and 16 microsatellite loci deviated significantly from Hardy–Weinberg expectations including a Bonferroni correction (P < 0.001). Thirteen loci were highly informative content (PIC ≥ 0.5) in both populations. These identified loci will be useful for potential application for evolutionary, population genetic and chromosome linkage mapping research on pearl oyster.  相似文献   

19.
The Florida scrub lizard (Sceloporus woodi) is one of a suite of species restricted to Florida scrub, a threatened ecosystem. We characterized eight microsatellite loci from scrub lizards based on screening of 75–91 individuals per locus. Polymorphism was high (8–20 alleles per locus). Observed and expected heterozygosities ranged from 0.32–0.83 and 0.77–0.91, respectively. These markers will be useful for population‐level analyses and can contribute to a genetic foundation for conservation strategies for this endemic species.  相似文献   

20.
In this study we characterized 10 polymorphic microsatellite markers for the land snail Cylindrus obtusus, an endemism of the Austrian Alps with a distribution in isolated populations above approximately 1,600 m. The microsatellite loci were analyzed in 44 individuals from two populations. Number of alleles per locus ranged between two and eight. Observed heterozygosity ranged between 0.00 and 1.00, and expected heterozygosity between 0.09 and 0.72. No significant linkage disequilibrium was found between pairs of loci. One of the sampled populations (Dachstein) showed no deviation from Hardy–Weinberg equilibrium and no presence of null alleles, whereas the other one (Schneeberg) did. These diverging results probably reflect differences in population structure rather than characteristics of the microsatellite loci and underline the usefulness of these markers for studying genetic diversity, population structure and differentiation in C. obtusus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号