首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When continuous cultures of Azotobacter vinelandii were supplied with ammonium or nitrate in amounts, which just repressed nitrogenase synthesis completely, both the intracellular glutamine level and the degree of adenylylation of the glutamine synthetase (GS) increased only slightly (from 0.45–0.50 mM and from 2 to 3 respectively), while the total GS level remained unaffected. Higher amounts of ammonium additionally inhibited the nitrogenase activity, caused a strong rise in the intracellular glutamine concentration and adenylylation of the GS, but caused no change in the ATP/ADP ratio. These results are considered as evidence that in A. vinelandii the regulation of nitrogenase synthesis is not linked to the adenylylation state of the GS and to the intracellular glutamine level, and that the inhibition of the nitrogenase activity as a consequence of a high extracellular ammonium level is not mediated via a change in the energy charge.Abbreviations GS glutamine synthetase - GS-S(Mg) Mg2+ dependent synthetic activity of GS - GS-T(Mn) Mn2+ dependent transferase activity of GS  相似文献   

2.
Singh  Surendra  Bisen  P. S. 《Current microbiology》1994,29(6):319-322
The role of intracellular glutamine concentration in the regulation of14C-glutamine uptake was studied in a diazotrophic cyanobacteriumAnabaena 7120. The uptake pattern was found to be biphasic, consisting of a rapid first phase lasting up to 60 s followed by a slower second phase. Azaserine, which could not inhibit in vitro and in vivo glutamine synthetase (GS) activity effectively, inhibited the14C-glutamine uptake. Glutamine uptake was also not significantly affected when glutamate, methylglutamate, aspartate, arginine, lysine, hydroxylysine, ornithine, and GS inhibitor,L-methionine-DL-sulfoximine (MSX) were simultaneously available during uptake assay, suggesting that glutamine uptake takes place via a general amino acid permease which does not, however, transport basic and acidic amino acids. The azaserine-treated cells had increased and decreased levels of glutamine and glutamate, respectively, suggesting that the increased intracellular glutamine level is responsible for the inhibition of14C-glutamine uptake and provides evidence here for the role of an intracellular glutamine pool in the regulation of14C-glutamine uptake inAnabaena 7120.  相似文献   

3.
The anaerobic fungusPiromyces sp. strain E2 appeared restricted in nitrogen utilization. Growth was only supported by ammonium as source of nitrogen. Glutamine also resulted in growth, but this was due to release of ammonia rather than to uptake and utilization of the amino acid. The fungus was not able to grow on other amino acids, albumin, urea, allantoin, or nitrate. Assimilation of ammonium is very likely to be mediated by NADP-linked glutamate dehydrogenase (NADP-GDH) and glutamine synthetase (GS). One transaminating activity, glutamate-oxaloacetate transaminase (GOT), was demonstrated. Glutamate synthase (GOGAT), NAD-dependent glutamate dehydrogenase (NAD-GDH), and the transaminating activity glutamate-pyruvate transaminase (GPT) were not detected in cell-free extracts ofPiromyces sp. strain E2. Specific enzyme activities of both NADP-GDH and GS increased four-to sixfold under nitrogen-limiting conditions.Abbreviations GDH Glutamate dehydrogenase - GOGAT Glutamate synthase - GOT Glutamate-oxaloacetate transaminase - GPT Glutamate-pyruvate transaminase - GS Glutamine synthetase  相似文献   

4.
Azotobacter vinelandii takes up the ammonium analog methylammonium from the external medium and metabolizes it to a less polar compound which has been identified as N-methylglutamine. The enzyme glutamine synthetase appears responsible for methylammonium metabolism in this organism and full activity of the enzyme is required for maximal rates of methylammonium uptake. L-methionine-DL-sulfoximine or L-methionine sulfone, inhibitors of glutamine synthetase activity, were shown to reduce the rate of methylammonium uptake by wild type cultures. A mutant strain with low glutamine synthetase activity was shown to be unable to carry out in vitro N-methylglutamine synthesis or in vivo uptake of methylammonium. Thus, methylammonium uptake assays may prove useful as a method of identifying mutants with altered glutamine synthetase activity.Abbreviations MSX L-methionine-DL-sulfoximine - MSF L-methionine sulfone  相似文献   

5.
Two pathways of ammonium assimilation are known in bacteria, one mediated by glutamate dehydrogenase, the other by glutamine synthetase and glutamate synthase. The activities of these three enzymes were measured in crude extracts from four Rhizobium meliloti wild-type strains, 2011, M15S, 444 and 12. All the strains had active glutamine synthetase and NADP-linked glutamate synthase. Assimilatory glutamate dehydrogenase activity was present in strains 2011, M15S, 444, but not in strain 12. Three glutamate synthase deficient mutants were isolated from strain 2011. They were unable to use 1 mM ammonium as a sole nitrogen source. However, increased ammonium concentration allowed these mutants to assimilate ammonium via glutamate dehydrogenase. It was found that the sole mode of ammonium assimilation in strain 12 is the glutamine synthetase-glutamate synthase route; whereas the two pathways are functional in strain 2011.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase  相似文献   

6.
One hundred and twenty-nine mutants of Azospirillum brasilense strain Sp6, resistant to methylammonium, were isolated. Three of the mutants were found to be able to reduce acetylene in the presence of 4 mM ammonium or 120mM methylammonium, concentrations which strongly reduced the nitrogenase activity of the parental strain. Under N2-fixing conditions, two mutants failed to switch off nitrogenase when NH4Cl was added. Moreover, the three mutants showed a reduced capacity to incorporate [14C]methylammonium. The level of glutamine synthetase activity found in the mutants was not reduced as compared to that of the parental strain. All of the data indicate an impairement in the mechanism of ammonium uptake by the bacterial cell.Abbreviations MEA Methylammonium - MSP minimal medium (ammonium free) - PY complete medium - GS glutamine synthetase  相似文献   

7.
Three types of glutamine synthetase (GS)-impaired mutants (gln) ofNostoc muscorum were isolated as ethylenediamine (EDA)-resistant phenotypes and characterized with respect to heterocyst development, nitrogen fixation, ammonium metabolism, photosynthetic characteristics, and glutamine synthetase activity. The criterion for categorizing the mutants was the extent of loss of GS activity (both in transferase and biosynthetic assays) compared with wild type; it was 70% in EDA-1, 30% in EDA-2, and more than 90% in EDA-3 strains. The level of nitrogenase activity in mutant strains was proportionate to heterocyst frequency and was found refractory to ammonium and EDA repression. In EDA-resistant strains, development of heterocysts and their spacing pattern remained unaffected and did not respond to treatment of amino acid analogues, drugs, and ammoniacal compounds which otherwise either stimulated or suppressed the number and altered the spacing pattern in wild type. A biphasic pattern of ammonium uptake indicating two transport systems was observed in all the strains except that the Km values for both high- and low-affinity systems were altered in mutant strains. In vivo treatment with MSX or EDA significantly inhibited the GS activity in wild type, whereas mutant strains did not respond to these treatments and were able to liberate NH 4 + continuously into the medium without MSX treatment. During NH 4 + uptake, percentage inhibition of O2 evolution and changes in increase of fluorescence intensity were low in EDA strains compared with wild type. Assessment of GS protein with antibodies against GS and quantitative polyacrylamide gel electrophoresis (PAGE) suggested that loss in specific activity of GS per milligram of extractable protein in EDA mutants was owing to low production of GS-specific protein. SDS-PAGE of purified GS enzyme from all the strains revealed only one polypeptide band of molecular weight of about 51.28 kDa.  相似文献   

8.
R. B. Lee  R. G. Ratcliffe 《Planta》1991,183(3):359-367
We show that the pH dependence of the base-catalysed exchange rate of the ammonium ion provides a basis for discriminating between the cytoplasmic and vacuolar pools of ammonium in plant tissues. In vivo, 14N-nuclear magnetic resonance spectra were recorded with and without 1H-decoupling and information on the subcellular distribution of NH 4 + was obtained from a lineshape analysis of the 1H-coupled spectrum. We applied this method to maize (Zea mays L.) root tissues and found that: (i), the cytoplasmic ammonium concentration was low, which was in accord with the large activity of glutamine synthetase present in the roots; and (ii), inhibition of glutamine synthetase with methionine sulphoximine increased the cytoplasmic ammonium concentration, and led to the appearance of ammonium in the xylem sap.Abbreviations GS glutamine synthetase - MSO l-methionine sulphoximine - NMR nuclear magnetic resonance - Pi inorganic phosphate On secondment to the Department of Plant Sciences, University of Oxford.We acknowledge the financial support of the Agricultural and Food Research Council. R.B. Lee also thanks the Department of Plant Sciences, University of Oxford, for hospitality.  相似文献   

9.
The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation between amidase and urease formation was observed. The results suggest that amidase formation in strain PAO is subject to nitrogen control and that glutamine or some compound derived from it mediates the nitrogen repression of amidase.  相似文献   

10.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

11.
Rhodopseudomonas globiformis strain 7950 grew with a variety of amino acids, urea, or N2 as sole nitrogen sources. Cultures grown on N2 reduced acetylene to ethylene; this activity was absent from cells grown on nonlimiting NH 4 + . Glutamate dehydrogenase could not be detected in extracts of cells of strain 7950, although low levels of an alanine dehydrogenase were present. Growth ofR. globiformis on NH 4 + was severely inhibited by the glutamate analogue and glutamine synthetase inhibitor, methionine sulfoximine. High levels of glutamine synthetase (as measured in the -glutamyl transferase assay) were observed in cell extracts of strain 7950 regardless of the nitrogen source, although N2 and amino acid grown cells contained somewhat higher glutamine synthetase contents than cells grown on excess NH 4 + . Levels of glutamate synthase inR. globiformis were consistent with that reported from other phototrophic bacteria. Both glutamate synthase and alanine dehydrogenase were linked to NADH as coenzyme. We conclude thatR. globiformis is capable of fixing N2, and assimilates NH 4 + primarily via the glutamine synthetase/glutamate synthase pathway.Abbreviations GS glutamine synthetase - GOGAT Glutamineoxoglutarate aminotransferase - GDH Glutamate dehydrogenase - ADH Alanine dehydrogenase - MSO Methionine sulfoximine  相似文献   

12.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   

13.
A procedure was devised for analyzing in vivo nitrogenase activity in Beggiatoa alba B18LD which involves: (1) the induction of nitrogenase in cells pre-grown on NH4Cl, by washing the cells free of NH4Cl and lowering their exposure to oxygen, and (2) measuring acetylene reduction by these cells. Using this induction methodology we examined the effects of pH, temperature, and nitrogenous compounds on in vivo nitrogenase induction and activity in Beggiatoa alba B18LD. Nitrate and nitrite repressed the induction of nitrogenase activity, but glutamine did not. Induction and activity had a combined pH optimum of 6.5 to 8.0, and activity had a temperature optimum of 29°C. Ammonium and urea caused immediate inhibition of nitrogenase activity, but nitrate, nitrite, glutamine, asparagine, and other amino acids did not. Ammonium-induced inhibition was transient and incomplete, and the duration of inhibition increased in direct proportion to the amount of ammonium added. Methionine sulfoximine, a glutamine synthetase inhibitor, at a final concentration of 50 μM blocked ammonium uptake by cells, but did not prevent nitrogenase inhibition if added before ammonium. Our results imply that B. alba nitrogenase inhibition by ammonium: (1) is not directly caused by ammonium assimilation products, (2) is probably not due to an enzymatic inactivation, and (3) may be related to ammonium transport.  相似文献   

14.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

15.
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

16.
Enterobacterial mutants defective in the nitrogen control regulatory system (Ntr) generally display a pleiotropic phenotype with regard to expression and regulation of several enzymes and transport systems involved in the assimilation of N sources. This report describes the isolation and characterization of similar pleiotropic mutants ofKlebsiella pneumoniae that cannot be complemented byntr genes. The strains excreted ammonia, were unable to grow on a number of N sources, and contained low glutamine:2-oxoglutarate amino transferase and normal, but unmodifiable glutamine synthetase activities and a nitrogenase level largely unaffected by ammonium, but still repressible by an amino acid mixture. Genetic studies suggested that this phenotype is due to overexpression of an unknown regulatory protein.Abbreviations GS Glutamine synthetase - GOGAT Glutamate synthase - ATase Adenylyl transferase - Ntr Nitrogen regulatory system  相似文献   

17.
Julie V. Cullimore 《Planta》1981,152(6):587-591
A 70% reduction in glutamine synthetase (GS) activity was observed within 5 min when 5 mM NH3 and darkness was applied to steady-state cells of Chlamydomonas utilising NO3. The enzyme was reactivated in vivo by reillumination of the culture and in vitro by treatment with thiol reagents. The activity modulations affected the synthetase and transferase activities similarly and were not influenced by protein synthesis inhibitors. Deactivation of GS was also observed when steady-state cells were treated with an uncoupler of phosphorylation, carbonylcyanide m-chlorophenylhydrazone (CCCP) or inhibitors of the electron transport chain but under these conditions the activity modulation affected over 90% of the activity and was irreversible. The mechanism of the physiological deactivation of GS is discussed in relation to both the in vivo and in vitro findings.Abbreviations GS glutamine synthetase (EC 6.3.1.2.) - GSs glutamine synthetase, synthetase activity - GSt glutamine synthetase, transferase activity - CAP chloramphenicol - CCCP carbonylcyanide m-chlorophenyl hydrazone - CHX cycloheximide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DSPD disalicylidene propanediamine - DTT dithiothreitol - GSH reduced glutathione  相似文献   

18.
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when “switchoff” is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.  相似文献   

19.
The uptake of glutamine was studied in Bacillus pasteurii DSM 33. Only one uptake system was detected in the concentration range studied (between 1 and 100 M glutamine) which exhibited Michaelis-Menten saturation kinetics, with an apparent K t of 10.7 (±3.5) M glutamine. The uptake was sodium-dependent (apparent K t=0.2 mM Na+); none of several monovalent cations tested was able to replace sodium in the uptake reaction. Ionophores interfering with proton, sodium or potassium gradients across membranes strongly inhibited uptake of glutamine. Low uptake rates correlating with low potassium content and an acidic cytoplasm were measured in cells grown at high ammonium1 concentrations. Ammonium and other permeant amines as well as potassium stimulated the uptake reaction in these cells, leading to an increase of up to 100-fold in V max without affecting the affinity of the uptake system. In cells grown at low concentrations of ammonium, an alkaline cytoplasm and both high glutamine uptake activities and potassium content were measured; the uptake reaction was not further stimulated by permeant amines or potassium in such cells. Growth of the strain was inhibited by Tris at high concentrations; this inhibition was relieved by the addition of increasing amounts of ammonium.Abbreviations CCCP carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide This work is dedicated to Prof. Dr. H. Kaltwasser on the occasion of his 60th birthday  相似文献   

20.
Urate was taken up at a negligible rate by Chlamydomonas reinhardtii cells grown on ammonium and transferred to media containing urate plus ammonium or urate plus chloral hydrate or cycloheximide. Addition of ammonium to cells actively consuming urate produced a rapid inhibition of urate uptake whereas the intracellular oxidation of urate was unaffected. Methylammonium but not glutamine or glutamate inhibited urate uptake. Addition of l-methionine-dl-sulfoximine to cells actively consuming urate provoked ammonium excretion, which was accompanied by a rapid inhibition of urate uptake. In cells growing on urate and exhibiting noticeable levels of nitrite-reductase activity, nitrite caused a sudden inhibition of urate uptake whereas nitrate required a time to induce nitrate reductase and to exert its inhibitory effect on uptake. The urate-uptake system did not require urate for induction since the urate-uptake capacity appeared in nitrogen-starved cells. From these results it is concluded that, in Chlamydomonas reinhardtii, ammonium inhibits urate uptake and also acts as co-repressor of the uptake system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号