首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have studied the changes in the activities of both nitrogenase (switch off) and glutamine synthetase in Rhodospirillum rubrum upon addition of ammonium ions or glutamine to nitrogen fixing cultures. Both activities decrease drastically and return in a parallel manner when added ammonia is metabolized. The decrease in glutamine synthetase activity does not seem to be primarily due to adenylylation of the enzyme. Addition of glutamine to cells starved for nitrogen results in inactivation of glutamine synthetase but nitrogenase is only partially switched off.Abbreviations CeMe3NBr Cetyltrimethylammonium bromide - Hepes N-2-hydroxyethyl-piperazine-N-2 sulfonic acid - MSO methionine-D,L-sulfoximine - Tea-Dmg triethanol amine-3,3-dimethylglutaric acid  相似文献   

2.
Incubation of Azotobacter chroococcum in the presence of micromolar concentrations of MnCl2, but not MgCl2, prevented nitrogenase activity from NH 4 + inhibition. Mg(II), at a 100-fold concentration with respect to Mn(II), counteracted the protective effect of Mn(II) on nitrogenase activity. When Mn(II) was added to cells that had been given NH4Cl, stopping of NH 4 + uptake and recovery of nitrogenase activity took place, and a raise of NH 4 + concentration in medium developed. Furthermore, incubation of A. chroococcum cells with 20 M Mn(II) under air, but not under an argon: oxygen (79%:21%) gas mixture, resulted in NH 4 + excretion to the external medium. The Mn(II)-mediated uncoupling of nitrogen fixation from ammonium assimilation leads us to conclude that Mn(II) may act as a physiological inhibitor of glutamine synthetase.Abbreviations Hepes N-2-Hydroxyethylpiperazine-N-ethanesulfonic acid - Mops 3-(N-Morpholino)propanesulfonic acid  相似文献   

3.
When continuous cultures of Azotobacter vinelandii were supplied with ammonium or nitrate in amounts, which just repressed nitrogenase synthesis completely, both the intracellular glutamine level and the degree of adenylylation of the glutamine synthetase (GS) increased only slightly (from 0.45–0.50 mM and from 2 to 3 respectively), while the total GS level remained unaffected. Higher amounts of ammonium additionally inhibited the nitrogenase activity, caused a strong rise in the intracellular glutamine concentration and adenylylation of the GS, but caused no change in the ATP/ADP ratio. These results are considered as evidence that in A. vinelandii the regulation of nitrogenase synthesis is not linked to the adenylylation state of the GS and to the intracellular glutamine level, and that the inhibition of the nitrogenase activity as a consequence of a high extracellular ammonium level is not mediated via a change in the energy charge.Abbreviations GS glutamine synthetase - GS-S(Mg) Mg2+ dependent synthetic activity of GS - GS-T(Mn) Mn2+ dependent transferase activity of GS  相似文献   

4.
To investigate the role of ammonium-assimilating enzyme in heterocyst differentiation, pattern formation and nitrogen fixation, MSX-resistant and GS-impaired mutants of Anabaena 7120 were isolated using transposon (Tn5-1063) mutagenesis. Mutant Gs1 and Gs2 (impaired in GS activity) exhibited a similar rate of nitrogenase activity compared to that of the wild type under dinitrogen aerobic conditions in the presence and absence of MSX. Filaments of Gs1 and Gs2 produced heterocysts with an evenly spaced pattern in N2-grown conditions, while addition of MSX altered the interheterocyst spacing pattern in wild type as well as in mutant strains. The wild type showed complete repression of heterocyst development and nitrogen fixation in the presence of NO3 or NH4 +, whereas the mutants Gs1 and Gs2 formed heterocysts and fixed nitrogen in the presence of NO3 and NH4 +. Addition of MSX caused complete inhibition of glutamine synthetase activity in wild type but Gs1 and Gs2 remained unaffected. These results suggest that glutamine but not ammonium is directly involved in regulation of heterocyst differentiation, interheterocyst spacing pattern and nitrogen fixation in Anabaena.  相似文献   

5.
NH 4 + excretion was undetectable in N2-fixing cultures ofRhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH 4 + to the medium. The glutamate analog,l-methionine-dl-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH 4 + . When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH 4 + . Nitrogenase activities and NH 4 + production from fixed N2 were increased considerably when a combined nitrogen source, NH 4 + (>40 moles NH 4 + /mg cell protein in 6 days) orl-glutamate (>60 moles NH 4 + /mg cell protein in 6 days) was added to the cultures together with MSX.Biochemical analysis revealed thatR. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH 4 + as well as by glutamate.The results demonstrate that utilization of solar energy to photoproduce large quantities of NH 4 + from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

6.
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4 + concentrations were investigated during the transition from an NH4 + free medium to one containing NH4 + ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80–100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1–2 hrs the NH4 + remaining in the medium is absorbed too, indicating the induction or activation of a new NH4 + transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4 + salts leads to acidification of the culture. Anaerobiosis suppresses NH4 + transport. A rise in the extracellular NH4 + level leads to a reversible rise in the glutamine synthetase activity, which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4 + level of about 0.6 mM does not change when extracellular NH4 + is taken up and repression of nitrogenase starts.  相似文献   

7.
Summary When ammonium ions are added to a nitrogen fixing culture ofRhodospirillum rubrum, nitrogenase activity decreases due to inactivation of the Fe-protein. We have studied the adenylate and pyridine nucleotide pools during switch-off using the sensitive bioluminescence method. Immediately after the addition of ammonium ions there is a decrease in the ATP pool which is quickly reversed and no change is seen during the switch-off period. The pyridine nucleotide pools also do not change significantly during the switch-off. Consequently we conclude that changes in the pools studied were not the signal promoting inactivation of the Fe-protein.  相似文献   

8.
Inorganic nitrogen metabolism in the obligate anaerobic thermophiles Chlostridium thermosaccharolyticum and Clostridium thermoautotrophicum differs in several respects. C. thermosaccharolyticum contains a nitrogenase as inferred from NH 4 + repressible C2H2 reduction, a glutamine synthetase which is partially repressed by ammonium, very labile glutamate synthase activities with both NADH and NADPH, NADPH-dependent glutamate dehydrogenase, and NH 4 + -dependent asparagine synthetase. C. thermoautotrophicum contains no nitrogenase, but glutamine synthetase, no glutamate synthase, no glutamate dehydrogenase, but a NADH-dependent alanine dehydrogenase and a NH 4 + -dependent asparagine synthetase.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase amidotransferase (glutamate synthase)  相似文献   

9.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

10.
Addition of ammonium salts to N2 fixing continuous cultures of Clostridium pasteurianum caused immediate stop of nitrogenase synthesis, while the levels of glutamine synthetase, glutamate dehydrogenase and asparagine synthetase remained constant. No evidence for an interconversion of the glutamine synthetase was found. The activities of glutamate synthase in crude extracts were inversely related to the nitrogenase levels. The intracellular glutamine pool rapidly expanded during nitrogenase repression and decreased as fast during derepression while the pool sizes of all other amino acids were not strongly related to the rate of nitrogenase formation. These investigations suggest glutamine as corepressor of nitrogenase synthesis.  相似文献   

11.
The inhibitory effects of 2-hydroxybiphenyl on various electron transport reactions of isolated membranes and growth in the presence of malate of either phototrophic or chemotrophic cells of Rhodospirillum rubrum were studied. 50% inhibition of both oxygen uptake of whole cells and growth under chemotrophic conditions (i.e. aerobiosis in the dark) was achieved in the presence of 0.09 mM 2-hydroxybiphenyl. With isolated membranes the same effect on NADH oxidase was obtained with 0.08 mM of inhibitor. Succinate dependent respiratory reactions were inhibited by 50% at a concentration of 0.36 mM. Growth under phototrophic conditions (i.e. anaerobiosis in the light) was inhibited by 50% in the presence of 0.17 mM (wild type strain) or 0.21 mM (blue-green mutant, strain VI) of 2-hydroxybiphenyl. Photophosphorylation and light dependent NAD+ reduction by succinate were inhibited by 50% at concentrations of 0.21 mM and 0.03 mM of inhibitor, respectively. After phototrophic growth of the organisms for about five doublings of cell mass in the presence of 0.18 mM of 2-hydroxybiphenyl coloured carotenoids could no longer be detected. Membrane fractions of such cultures exhibited normal activities of succinate cytochrome c reductase but activities of NADH cytochrome c reductase were decreased by 80%. In comparison with a blue green mutant, strain VI, of R. rubrum light induced absorbance changes at 865 nm as well as activities of photophosphorylation were unaffected. However, no activity of light dependent NAD+ reduction with succinate could be detected. The data indicate that cellular respiration as well as chemotrophic growth depend largely on NADH dependent respiration. Phototrophic growth, on the other hand, is limited by photophosphorylation while energy dependent reversed electron flow to NAD+, if at all, is of rathe minor importance.Abbreviation BChl bacteriochlorophyll  相似文献   

12.
Inorganic nitrogen metabolism in two cellulose degrading clostridia, the mesophile Clostridium cellobioparum and the thermophile Clostridium thermocellum was investigated. Both strains show acetylene reduction (i.e. possibly nitrogenase activity), contain glutamine synthetase, glutamate dehydrogenase and glutamate-dependent transaminases. C. cellobioparum additionally contains a NADH-dependent glutamate synthase and a NH 4 + -repressible glycine dehydrogenase (NADPH). Remarkably, acetylene reduction in C. thermocellum is not repressed by ammonium, casting doubt whether this activity is due to nitrogenase. The results are compared with the data from other saccharolytic clostridia.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase (glutamate synthase)  相似文献   

13.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   

14.
A Mastigocladus species was isolated from the hot spring of Jakrem (Meghalaya) India. Uptake and utilization of nitrate, nitrite, ammonium and amino acids (glutamine, asparagine, arginine, alanine) were studied in this cyanobacterium grown at different temperatures (25°C, 45°C). There was 2–3 fold increase in the heterocyst formation and nitrogenase activity in N-free medium at higher temperature (45°C). Growth and uptake and assimilation of various nitrogen sources were also 2–3 fold higher at 45°C indicating that it is a thermophile. The extent of induction and repression of nitrate uptake by NO3 and NH4 +, respectively, differed from that of nitrite. It appeared that Mastigocladus had two independent nitrate/nitrite transport systems. Nitrate reductase and nitrite reductase activitiy was not NO3 -inducible and ammonium or amino acids caused only partial repression. Presence of various amino acids in the media partially repressed glutamine synthetase activity. Ammonium (methylammonium) and amino acid uptake showed a biphasic pattern, was energy-dependent and the induction of uptake required de novo protein synthesis. Ammonium transport was substrate (NH4 +)-repressible, while the amino acid uptake was substrate inducible. When grown at 25°C, the cyanobacterium formed maximum akinetes that remained viable upto 5 years under dry conditions.  相似文献   

15.
Nitrogenase in Chromatium vinosum was rapidly, but reversibly inhibited by NH 4 + . Activity of the Fe protin component of nitrogenase required both Mn2+ and activating enzyme. Activating enzyme from Rhodospirillum rubrum could replace Chromatium chromatophores in activating the Chromatium Fe protein, and conversely, a protein fraction prepared from Chromatium chromatophores was effective in activating R. rubrum Fe protein. Inactive Chromatium Fe protein contained a peptide covalently modified by a phosphate-containing molecule, which migrated the same in SDS-polyacrylamide gels as the modified subunit of R. rubrum Fe protein. In sum, these observations suggest that Chromatium nitrogenase activity is regulated by a covalent modification of the Fe protein in a manner similar to that of R. rubrum.Abbreviation HEPES N-2-hydroxyethyl piperazine-N-2-ethanesulfonic acid  相似文献   

16.
The primary steps of N2, ammonia and nitrate metabolism in Klebsiella pneumoniae grown in a continuous culture are regulated by the kind and supply of the nitrogenous compound. Cultures growing on N2 as the only nitrogen source have high activities of nitrogenase, unadenylated glutamine synthetase and glutamate synthase and low levels of glutamate dehydrogenase. If small amounts of ammonium salts are added continuously, initially only part of it is absorbed by the organisms. After 2–3 h complete absorption of ammonia against an ammonium gradient coinciding with an increased growth rate of the bacteria is observed. The change in the extracellular ammonium level is paralleled by the intracellular glutamine concentration which in turn regulates the glutamine synthetase activity. An increase in the degree of adenylation correlates with a repression of nitrogenase synthesis and an induction of glutamate dehydrogenase synthesis. Upon deadenylation these events are reversed.—After addition of nitrate ammonia appears in the medium, probably due to the action of a membrane bound dissimilatory nitrate reductase.—Addition of dinitrophenol causes transient leakage of intracellular ammonium into the medium.  相似文献   

17.
Acetylene-reducing activity of detached pea nodules was determined by submerging the nodules in buffer solution [tris(hydroxymethyl)aminomethane-hydrochloride, pH 7.4] containing 100 mM sodium succinate and incubating under a gas phase of 90% O2 and 10% C2H2. The nitrogenase activity was 4 to 8 μmol of C2H4 formed per g of nodule fresh weight per h and remained constant for at least 4 h. Addition of NH4Cl to the buffer solution (at a concentration of 10 mM or more) resulted in a significant decrease of nitrogenase activity, which was more pronounced at higher concentrations of ammonium chloride. The inhibition of nitrogenase activity by NH4Cl was reversible; when the NH4Cl-containing buffer solution was replaced by buffer without NH4Cl, the original activity was partly restored. Treatment of the nodules with NH4Cl had almost no effect on the amount of nitrogenase, as measured by the acetylene-reducing activity of ethyl-enediaminetetraacetate-toluene-treated bacteroid suspensions. The effect of NH4Cl was largely eliminated by simultaneous addition of 10 mM methionine sulfoximine to the assay solution. This suggests that the assimilation of ammonium ions by glutamine synthetase controls the functioning of nitrogenase activity in the nodules. However, no effect of glutamine, glutamate, or aspartate on the acetylene reduction by detached nodules could be detected.  相似文献   

18.
The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55–60°C and an apparent midpoint melting temperature (T m) of 70°C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized. Based on a structural alignment of McIDH and homotetrameric homoisocitrate dehydrogenase (HDH) from Thermus thermophilus (TtHDH), we identified the clasp-like domain of McIDH as a likely site for tetramerization. McIDH showed moreover, higher sequence identity (48%) to TtHDH than to previously characterized IDHs. Putative NAD+-IDHs with high sequence identity (48–57%) to McIDH were however identified in a variety of bacteria showing that NAD+-dependent IDHs are indeed widespread within the domain, Bacteria. Phylogenetic analysis including these new sequences revealed a close relationship with eukaryal allosterically regulated NAD+-IDH and the subfamily III of IDH was redefined to include bacterial NAD+- and NADP+-dependent IDHs. This apparent relationship suggests that the mitochondrial genes encoding NAD+-IDH are derived from the McIDH-like IDHs.  相似文献   

19.
Conditions for activity of glutaminase in kidney mitochondria   总被引:7,自引:6,他引:1       下载免费PDF全文
1. Rat kidney mitochondria oxidize glutamate very slowly. Addition of glutamine stimulates this respiration two- to three-fold. Addition of glutamate also stimulates respiration in the presence of glutamine. 2. By measuring mitochondrial swelling in iso-osmotic solutions of glutamine or of ammonium glutamate it was shown that glutamine penetrates the mitochondrial membrane rapidly whereas ammonium glutamate penetrates very slowly. 3. Experiments in which reduction of NAD(P)+ was measured in preparations of intact and broken mitochondria indicated that glutamate dehydrogenase shows the phenomenon of `latency'. On the addition of glutamine rapid reduction of nicotinamide nucleotides in intact mitochondria was obtained. 4. During the action of glutaminase there is an accumulation of glutamate inside the mitochondria. 5. When the mitochondria were suspended in a medium containing glutamine, Pi and rotenone the rate of production of ammonia was stimulated by the addition of a substrate, e.g. succinate. Addition of an uncoupler or antimycin A abolished this stimulation. 6. The effects of succinate and uncoupler were especially pronounced in the presence of glutamate, which is an inhibitor of glutaminase activity by competition with Pi. 7. Determination of the enzyme activity in media at different pH values showed that the optimum pH for glutaminase activity in the preparation of broken mitochondria was 8, whereas for intact mitochondria it was dependent on the energy state. In the presence of succinate as an energy source it was pH 8.5, but in the presence of uncoupler or antimycin A it was 9. This displacement of the pH optimum to a higher value was especially pronounced in the presence of both glutamate and uncoupler. 8. If nigericin was present in potassium chloride medium the pH optimum for enzyme activity in intact non-respiring mitochondria was nearly the same as in the preparation of broken mitochondria; however, its presence in K+-free medium displaced the pH optimum for glutaminase activity to a very high value. 9. It is postulated that because of low permeability of the kidney mitochondrial membrane to glutamate the latter accumulates inside the mitochondria, and that this leads to the inhibition of the enzyme by competition with Pi and also by lowering the pH of the intramitochondrial space. With succinate as substrate for respiration there is an outward translocation of H+ ions, which together with accumulation of Pi increases glutaminase activity. Translocation of K+ ions inward increases the enzyme activity, perhaps by increasing the pH of the internal spaces and causing an accumulation of Pi. 10. The importance of the location of the enzyme in the mitochondria in relation to its biological function and conditions for activity is discussed.  相似文献   

20.
A procedure was devised for analyzing in vivo nitrogenase activity in Beggiatoa alba B18LD which involves: (1) the induction of nitrogenase in cells pre-grown on NH4Cl, by washing the cells free of NH4Cl and lowering their exposure to oxygen, and (2) measuring acetylene reduction by these cells. Using this induction methodology we examined the effects of pH, temperature, and nitrogenous compounds on in vivo nitrogenase induction and activity in Beggiatoa alba B18LD. Nitrate and nitrite repressed the induction of nitrogenase activity, but glutamine did not. Induction and activity had a combined pH optimum of 6.5 to 8.0, and activity had a temperature optimum of 29°C. Ammonium and urea caused immediate inhibition of nitrogenase activity, but nitrate, nitrite, glutamine, asparagine, and other amino acids did not. Ammonium-induced inhibition was transient and incomplete, and the duration of inhibition increased in direct proportion to the amount of ammonium added. Methionine sulfoximine, a glutamine synthetase inhibitor, at a final concentration of 50 μM blocked ammonium uptake by cells, but did not prevent nitrogenase inhibition if added before ammonium. Our results imply that B. alba nitrogenase inhibition by ammonium: (1) is not directly caused by ammonium assimilation products, (2) is probably not due to an enzymatic inactivation, and (3) may be related to ammonium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号