首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mutants of the yeast Saccharomyces cerevisiae were identified,in which O-glycosylation at threonine 29 of a heterologous protein,human insulin-like growth factor (hIGF-1), is defective. Inmutant M195, O-glycosylation of hIGF-1, but not of yeast proteinschitinase and a-agglutinin, was reduced; in mutant M577 yeastproteins were affected besides hIGF-1. The mutations of M195and M577 did not affect viability and could not be complementedby the PMT1 or PMT2 genes. The mutant phenorype of strain M195was reconstituted in an in vitro system, in which a hIGF-1-derivedpeptide encompassing residues 24–34 was not used as acceptorfor mannosylation, while unrelated peptides were glycosylatedat wild-type levels. hIGF-1 glycosylation was drastically reducedin pmt1 disruptants and to a lesser extent in pmt2 disruptants,suggesting interaction between the PMT gene products and componentsmutated in M195 and M577 cells. The results suggest that mutationsmay only affect O-glycosylation of a specific subset of secretedproteins in yeast. insulin-like growth factor O-glycosylation protein mannosyltransferase Saccharomyces cerevisiae  相似文献   

4.
N-Linked protein glycosylation in most eukaryotic cells initiateswith the transfer of the oligosaccharide Glc3Man9GlcNAc2 fromthe lipid carrier dolichyl pyrophosphate to selected asparagineresidues. In the yeast Saccharomyces cerevisiae, alg mutationswhich affect the assembly of the lipid-linked oligosaccharideat the membrane of the endoplasmic reticulum result in the accumulationof lipid-linked oligosaccharide intermediates and a hypoglycosylationof proteins. Exploiting the synthetic growth defect of alg mutationsin combination with mutations affecting oligosaccharyl transferaseactivity (Stagljar et al., 1994), we have isolated the ALG6locus. alg6 mutants accumulate lipid-linked Man9GlcNAc2, suggestingthat this locus encodes an endoplasmic glucosyltransferase.Alg6p has sequence similarity to Alg8p, a protein required forglucosylation of Glc1Man9GlcNAc2. Saccharomyces cerevisiae endoplasmic reticulum glycosyltransferase dolichol  相似文献   

5.
6.
Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The Saccharomyces cerevisiae alg3-1 mutant is descilbed as defectivein the biosynthesis of dolichol-linked oligosaccharides (Huffakerand Robbins, Proc. Natl. Acad. Sci. USA, 80, 7466–7470,1983). Man5GlcNAc2-PP-Dol accumulates in alg3 cells and EndoH resistant carbohydrates are transferred to protein by theoligosaccharyltransferase complex. In this study, we describethe cloning of the ALG3 locus by complementation of the temperaturesensitive growth defect of the alg3 stt3 double mutant. Theisolated ALG3 gene complements both the defect in the biosynthesisof lipidlinked oligosaccharides of the alg3-mutant and the underglycosylationof secretory proteins. The inactivation of the nonessentialALG3 gene results in the accumulation of lipid-linked Man5GlcNAc2and protein-bound carbohydrates which are completely Endo Hresistant. The ALG3 locus encodes a potential ER-transmembraneprotein of 458 amino acids (53 kDa) with a C-terminal KKXX-retrievalsequence. lipid-linked oligosaccharide N-glycosylation synthetic lethality  相似文献   

7.
TAYLOR  M.; FRANCIS  D. 《Annals of botany》1989,64(6):625-633
The cell cycle in Silene coeli-rosa shoot apices was measuredto test whether or not early components of the floral stimulus,produced during the 2nd and 3rd long days (LD) of an inductiveLD treatment, resulted in an increase in the duration of G2phase in constant 20–24 h cell cycles. Plants were grownat 20°C in short days (SD) of 8 h light and 16 h darknessfor 28 d (day 0). Starting on day 0, plants were given SD or3 LD each comprising an identical 8 h day and 16 h photo-extension,or 3 dark-interrupted (d.i.) non-inductive LD, interrupted at1700 h of each day with 1 h of darkness. The cell cycle (percentagelabelled mitoses method) and changes in cell number were determinedin the shoot apical meristem. During days 1–2 of the SDtreatment, the cell cycle and mean cell generation time (MCGT)was 18 and 32 h, respectively, giving a growth fraction of 56%.During days 2–3, the cell cycle and MCGT shortened to15 and 23 h, respectively (growth fraction = 65%). During days1–2 of the LD and d.i. LD treatments, cell cycles andMCGTs were 9–10 and 27–29 h, respectively, resultingin smaller growth fractions (about 33%). Thus, shortened cellcycles and altered growth fractions occurred regardless of whetheror not the treatment was inductive. The LD treatment resultedin a marked shortening of G1 and, to a lesser extent, S-phase,whilst G2 remained constant. These changes were consistent withincreases in the proportion of cells in G2 during the photoextensionof each LD which were suppressed during the comparable periodsof the d.i. LD treatment. The latter treatment resulted in eachphase occupying virtually identical proportions of the cellcycle as in the SD treatment. Thus, the unique cell cycle responsesto the initial part of the inductive LD treatment were increasesin the proportion of cells in G2 coupled with G1 and G2 beingof similar duration. Cell cycle, mean cell generation time, shoot apex, Silene coeli-rosa  相似文献   

8.
Protoplasts of cotton cotyledons were isolated and culturedto undergo cell wall regeneration and cell division. DNA contentand cell cycle parameters of nuclei from cotyledons and/or protoplastswere determined by flow cytometry. The DNA content of cotton,Gossypium hirsutum L., was estimated to be 4·34±0·12pg DNA per nucleus. There was a strong positive correlation between G2 or Sand G2,and cell wall regeneration and cell division and a strong negativecorrelation between G1, and cell wall regeneration and celldivision of cotton cotyledon protoplasts. The cell cycle statusof cotyledons changes during their development; as the cotyledonsenlarge, the proportion of cells in G0 and G1 phases of thecell cycle increases. The implication of these results in relationto protoplast growth and development is discussed. Key words: Cell cycle parameters, cell wall regeneration, cell division, flow cytometry, Gossypium  相似文献   

9.
Increases in carbonic anhydrase activity and decreases in K1/2(CO)2for photosynthesis in Chlorella vulgaris llh, which are inducedby adaptation of cells to low CO2, were suppressed by the additionof glucose to the growth medium. The results show that phenomenainduced by decreases in CO2 are controlled by glucose or itsmetabolites. (Received July 11, 1990; Accepted December 25, 1990)  相似文献   

10.
Axillary buds of pea (Pisum sativum L. cv. Alaska) do not growon intact plants. Dormant axillary buds can be stimulated togrow rapidly after decapitation. Here, we isolated cDNAs ofPCNA, cyclinB, cyclinD, and cdc2 from pea. The mRNA expressionlevels of these genes were very low in dormant axillary buds,whereas they remarkably increased after decapitation. Basedon the mRNA accumulation patterns of these genes, we found thatmost cells in dormant axillary buds are arrested at the G1 phasein the cell cycle. There are four buds at the second node onpea seedlings. After decapitation, mRNAs became abundant inthe large and small buds and were kept during the following3 d. After 4 d, mRNAs were still present in the large bud, butnot in the small bud. However, after removal of the large bud,the mRNA levels started to increase again in the small bud.These mRNA accumulation patterns were the same as those afterthe first decapitation. These results suggested that most cellsin axillary buds at the second node are arrested at the G1]phase again and have the capacity to undergo multiple cyclesof dormancy and growth. Moreover, in situ hybridization analysesdemonstrated that PCNA mRNA increased in all parts of the axillarybuds after decapitation. (Received October 31, 1997; Accepted December 11, 1997)  相似文献   

11.
The Saccharomyces cerevisiae ALG7 gene, which functions by initiating the dolichol pathway of protein N-glycosylation, displays properties of an early growth-response gene. To initiate studies of the involvement of ALG7 in cellular proliferation, we have now more precisely analyzed ALG7 expression in the G1 phase of cell cycle. We show that the rapid rate of ALG7 mRNA accumulation following growth stimulation was attenuated soon thereafter and that ALG7 growth induction occurred irrespective of α-factor. ALG7 growth induction was observed in mutants conditionally defective for reentry into the cell cycle from the stationary phase, indicating that the induction occurred prior to the performance of START. In addition, the steady-state levels of ALG7 mRNAs declined four-fold in response to START-I cell division arrest brought about by α-factor treatment later in G1. Importantly, deregulated expression of ALG7 resulted in an aberrant α-factor response. Our data not only indicate that ALG7 expression is regulated at two critical control points in G1 that determine the proliferative potential of cells, but also provide a link between ALG7 and START.  相似文献   

12.
The deletion of the protein mannosyltransferase 1 gene (PMT1)of Saccharomyces cerevisiae results in viable cells. O-Mannosylationof proteins is reduced to about half of the value in comparisonto wild-type cells. In order to distinguish between the thePMT1 gene product (= Pmt1p) and residual transferase activity,an in vitro assay to measure Dol-P-Man:protein mannosyltransferaseactivity in cells deleted for PMT1 has been developed. The transferaseactivity of these cells exhibits a pH optimum of 6.5 as comparedto pH 7.5 for Pmt1p. The K$$$ value of the residual enzyme activityfor the hexapeptide YNPTSV is 7 times higher than that of Pmt1pand shows a clear preference for the seryl/residue. Differencesin substrate affinities as well as in seryl/threonyl preferencebetween the two enzymes, however, depend on the specific sequenceof the peptides used in the enzyme assay. The new enzyme activityshows a significantly lower thermal stability as compared toPmt1p. glycoprotein O-glycosylation mannosyltranferase Saccharomyces cerevisiae  相似文献   

13.
Cell cycle phase durations of cultures of Amphidinium carteriin light- or nitrogen-limited balanced growth were determinedusing flow cytometry. For both types of growth rate limitation,the increases in generation time caused by increasing degreesof limitation were due solely to expansion of the G1 phase ofthe cell cycle. The durations of the S and G2 + M phases wereindependent of growth rate. Furthermore, when cells were deprivedcompletely of light and nitrogen, they arrested in the G1 phaseof the cell cycle. The results indicate that light- and nitrogen-dependentprocesses are heavily concentrated in the early part of thecell cycle, while DNA replication and cell division, once initiated,are independent of light or nitrogen supply.  相似文献   

14.
Sedimentation behavior of sweet potato glucose 6-phosphate dehydrogenasewas studied using the sucrose density gradient centrifugation.The relative s value to s20, value of alcohol dehydrogenasewas determined to be about 6 in the absence of both NADP$ andglucose 6-phosphate. In the presence of NADP$, the enzyme wassedimented with a relative s value of about 9. The additionof glucose 6-phosphate did not affect the sedimentation behavior.When glucose 6-phosphate was added to the gradient medium containingNDAP$, the enzyme was sedimented with a relative s value ofabout 6 or 7, depending on the concentration of glucose 6-phosphate. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku. Tokyo, Japan. (Received February 13, 1971; )  相似文献   

15.
CWH8/YGR036c of Saccharomyces cerevisiae has been identifiedas a dolichylpyrophosphate (Dol-PP) phosphatase that removesa phosphate from the Dol-PP generated by the oligosaccharyltransferase(OST), while it adds N-glycans to nascent glycoproteins in theendoplasmic reticulum (ER). Lack of CWH8 was proposed to interruptthe so called dolichol (Dol) cycle by trapping Dol in the formof Dol-PP in the ER lumen. Indeed, cwh8D mutants display a severedeficiency in N-glycosylation. We find that cwh8D mutants havestrongly reduced levels of inositolphosphorylceramide (IPC),whereas its derivative, mannosyl-(inositol-P)2-ceramide (M(IP)2C)is not affected. Microsomes of cwh8D contain normal ceramidesynthase and IPC synthesis activities. Within a large panelof mutants affecting Dol dependent pathways such as N- or O-glycosylation,or glycosylphosphatidyl inositol (GPI)-anchoring, only the mutantshaving a deficiency of N-glycan addition show the defect inIPC biosynthesis. By mutating genes required for the additionof N-glycans or by treating cells with tunicamycin (Tm) onecan similarly reduce the steady state level of IPC and exactlyreproduce the phenotype of cwh8D cells. Some potential mechanismsby which the lack of N-glycans could lead to the sphingolipidabnormality were further explored.  相似文献   

16.
17.
Mesophyll chloroplasts capable of assimilating 1.2 µmolesCO2 per milligram chlorophyll per hour were isolated from 7-day-oldcorn (Zea mays, Nagano No. 1) leaves. Addition of phosphoenolpyruvateincreased the rate of CO2 fixation in light up to 22 µmolesper milligram chlorophyll per hour, whole exogenously addedribose 5-phosphate and adenosine triphosphate brought aboutonly small increases. The CO2 fixation products were mostlymalate and aspartate. Bundle sheath strands isolated from the same plants were capableof assimilating 3–26 µmoles CO2 per milligram chlorophyllper hour. The fixation rate increased 3- to 5-fold on additionof ribose 5-phosphate and adenosine triphosphate, while exogenousphosphoenolpyruvate had no effect. The bulk of early productsof light-induced CO2 fixation were phosphate esters. These results indicate that corn mesophyll chloroplasts initiallyfix CO2 by phoenolpyruvate carboxylase and that reductive pentosephosphate cycle occurs in corn bundle sheath cells, but notin the mesophyll chloroplasts. (Received January 25, 1974; )  相似文献   

18.
Two cDNA clones exclusively induced under an extremely high-CO2concentration (20%) were isolated from Chlorococcum littoraleby differential screening and named HCR (high-CO2 response)1 and 2, respectively. The amino acid sequence of the proteinencoded by HCR2 exhibited homology to the gp91-phox protein,a critical component of a human phagocyte oxidoreductase, andto the yeast ferric reductases, Saccharomyces cerevisiae FRE1and FRE2 and Schizosaccharomyces pombe Frpl. The induction ofboth HCR mRNAs required extremely high-CO2 conditions and irondeficiency, being suppressed under air conditions and by ironsufficiency, suggesting that the expression of these two HCRgenes required extremely high-CO2 conditions and iron deficiencyin combination. The HCR2 protein was detected in the membranefractions of cells grown under conditions which would favorthe induction of HCR2-mRNA and the protein level was loweredwhen the cells were transferred from iron deficient to 10 µMFeSO4 conditions (with 20% CO2). (Received September 10, 1997; Accepted November 14, 1997)  相似文献   

19.
Two methods were used to estimate construction costs for leaves,stems, branches and woody roots of yellow-poplar (LiriodendrontulipiferaL.) trees grown at ambient (35 Pa) and elevated (65Pa) CO2for 2.7 years and trees of white oak (Quercus albaL.)grown at these same CO2partial pressures for 4 years. Samplecombustion in a bomb calorimeter combined with measurementsof ash and nitrogen content provided the primary method of estimatingtissue construction costs (WG; g glucose g-1dry mass). Thesevalues were compared with a second, simpler method in whichcost estimates were derived from tissue ash, carbon and nitrogencontent (VG). Estimates of WGwere lower for leaves, branchesand roots of yellow-poplar and for leaves of white oak grownat elevated compared with ambient CO2partial pressures. TheseCO2-induced differences in WGranged from 3.7% in yellow-poplarroots to 2.1% in white oak leaves. Only in the case of yellow-poplarleaves, however, were differences in VGobserved between CO2treatments.Leaf VGwas 1.46 g glucose g-1dry mass in ambient-grown treescompared with 1.41 g glucose g-1dry mass for CO2-enriched trees.Although paired-estimates of WGand VGclustered about a 1:1 linefor leaves and branches, estimates of VGwere consistently lowerthan WGfor stems and roots. Construction costs per unit leafarea were 95 g glucose m-2for yellow-poplar trees grown at ambientCO2and 106 g glucose m-2for trees grown at elevated CO2partialpressures. No differences in area-based construction costs wereobserved for white oak. Whole-plant energy content was 1220g glucose per tree in ambient-grown white oak compared with2840 g glucose per tree for those grown at elevated CO2partialpressures. These differences were driven largely by CO2-inducedchanges in total biomass. We conclude that while constructioncosts were lower at elevated CO2partial pressures, the magnitudeof this response argues against an increased efficiency of carbonuse in the growth processes of trees exposed to CO2enrichment. Bomb calorimeter; construction costs; elevated CO2; energy allocation; global change; growth respiration; heat of combustion; respiration; Liriodendron tulipifera; Quercus alba  相似文献   

20.
《Autophagy》2013,9(10):1702-1711
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号