首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The structure of the ribosomal DNA has been analyzed in three species of theCynareae tribe using Southern blot hybridization.Silybum marianum possesses two types of ribosomal genes 12.3 and 13.4 kb long;Cirsium vulgare has at least four types of rDNA repeats 10.6, 10.5, 11.7 and 11.9 kb long;Carlina acaulis only one type of ribosomal genes 9.7 kb long. The rRNA genes of the three species studied showed an identical restriction mapping in the 18 S and 25 S regions. However species differentiation in length and/or nucleotide sequences are present in the external spacer and very probably in the internal transcribed spacer.By cytophotometric studies and byin vitro rRNA/DNA filter hybridization, the DNA amount/4 C nucleus and the rDNA percentage were calculated in nine species of theCynareae tribe:Cynara cardunculus subsp.scolymus (artichoke),Cynara cardunculus subsp.cardunculus (wild artichoke),Onopordon acanthium, O. illyricum, Galactites tomentosa, Carduus nutans, Silybum marianum, Cirsium vulgare andCarlina acaulis. The DNA amount/4 C nucleus in eight species are similar, ranging from 4.24 pg inGalactites tomentosa to 5.96 pg inCirsium vulgare, whileCarlina acaulis has a DNA amount/ 4C nucleus of 11.8 pg. The rDNA percentages range from 0.192% inOnopordon acanthium to 1.022% inSilybum marianum, whileCarlina acaulis has 0.038% of rDNA. This latter species is clearly distinct within theCynareae tribe.  相似文献   

2.
The taxonomy of the genusQuercus is still unclear. In order to elucidate the taxonomy of Mediterranean oaks we have analyzed ribosomal RNA genes ofQuercus cerris, Q. coccifera, Q. trojana, Q. ilex, Q. suber, andQ. macrolepis by means of Southern blot hybridization. Oak nuclear DNA was extracted from root tips of 300 acorns and from catkins of single plants. EcoRI and BamHI restriction endonucleases were used. DNA electrophoresis and rRNA/DNA hybridization were performed usingVicia faba rRNA 18 S and 25 S as probes. The rRNA genes of all the species studied have an identical restriction mapping in the 18 S and 25 S regions, while differences in length are present in the intergenic regions.Q. cerris possesses at least four types of genes of 12.1, 11.5, 8.5, and 8.3 kb;Q. coccifera at least three types of 12.4, 10.4, and 10.1 kb;Q. trojana possesses the same rRNA genes asQ. cerris plus another gene type 12.0 kb long, with EcoRI and BamHI restriction sites in the intergenic spacer;Q. ilex at least three types of 12.4, 10.85, and 9.5 kb;Q. suber at least five types of 11.5, 11.0, 8.6, 8.5, and 8.3 kb;Q. macrolepis, finally, at least seven types of 11.5, 11.0, 10.2, 8.6, 8.5, 8.3, and 8.15 kb.Q. coccifera andQ. ilex rDNA appears quite different respect to other species examined, while high similarity seems to exist betweenQ. cerris, Q. trojana, Q. suber, andQ. macrolepis. These results are in agreement with the taxonomic model proposed bySchwarz for the genusQuercus.  相似文献   

3.
F. Maggini  M. J. Carmona 《Protoplasma》1981,108(1-2):163-171
Summary Southern blot hybridizations were performed to investigate the ribosomal DNA structure inAllium cepa (Liliaceae). The analysis of single and double digestions with Eco RI, Hind III, and Bam HI endonuclease restriction enzymes showed the presence of at least two types of repetitive units. The gene types were present in each single individual ofAllium cepa analyzed, notwithstanding the variation of the ribosomal gene number from 5,500 to 11,900 and the NOR number from 2 to 4. The first and the second gene type are 12.7 kb long and the first type is much more represented inAllium cepa genome. The differences between the two gene types consist in the position of the Hind III restriction sites in the external spacer.Work supported by CNR contract no. 74/0267.  相似文献   

4.
Variation in ribosomal DNA spacer length was analysed in 23 populations of 12Secale spp. by restriction enzyme analysis. Digestion of rDNA with Taq I endonuclease enzyme yields spacer fragments that include the subrepeat array and the non-repetitive region downstream of the array. Extensive spacer length variation existed in most species with Taq I fragment lengths ranging from 0.9–3.1 kb. These length variants have been attributed to the differences in number of 134 bp spacer subrepeats within rDNA arrays.S. silvestre was the only species to exhibit a unique spacer length variant of 0.9 kb and this was shown to result from the presence of an extra Taq I site in the spacer. rDNA spacer length frequencies were determined for the species. These frequencies were used to derive phenetic relationships between the species by numerical taxonomic methods. In plots constructed fromGower's distance matrices,S. silvestre appeared well separated from the major cluster consisting of the other species. On the basis of morphological and cytogenetic criteria,S. silvestre is considered the most ancient species. The rDNA data is consistent with this interpretation as it shows a clear differentiation ofS. silvestre from all the other species based on length and nucleotide sequence composition of the spacer region.  相似文献   

5.
Sequence arrangement of the rDNA of Drosophila melanogaster.   总被引:41,自引:0,他引:41  
M Pellegrini  J Manning  N Davidson 《Cell》1977,10(2):213-214
The sequence arrangement of genes coding for stable rRNA species and of the interspersed spacers on long single strands of rDNA purified from total chromosomal DNA of Drosophila melanogaster has been determined by a study of the structure of rRNA:DNA hybrids which were mounted for electron microscope observation by the gene 32-ethidium bromide technique. One repeat unit contains the following sequences in the order given. First, an 18 S gene of length 2.13 +/- 0.17 kb. Second, an internal transcribed spacer (Spl) of length 1.58 +/- 0.15 kb. A short sequence coding for the 5.8S and perhaps the 2S rRNA species is located within this spacer. Third, the 28S gene with a length of 4.36 +/- 0.23 kb. About 55% of the 28S genes are unbroken or continuous (C genes). However, about 45% of the 28S genes contain an insertion of an additional segment of DNA that is not complementary to rRNA (l genes). The insertion occurs at a reproducible point 2.99 +/- 0.26 kb from the junction with Spl. The insertions are heterogeneous in length and occur in three broad size classes: 1.42 +/- 0.47, 3.97 +/- 0.55, and 6.59 +/- 0.62 kb. Fourth, an external spacer between the 28S gene and the next 18S gene which is presumably mainly nontranscribed and which has a heterogeneous length distribution with a mean length and standard deviation of 5.67 +/- 1.92 kb. Short inverted repeat stems (100-400 nucleotide pairs) occur at the base of the insertion. It is known from other studies that I genes occur only on the X chromosome. The present study shows that the I and C genes on the X chromosomes are approximately randomly assorted. The sequence arrangement on the plasmid pDm103 containing one repeat of rDNA (Glover et al., 1975) has been determined by similar methods. The I gene on this plasmid contains an inverted repeat stem. The occurrence of inverted repeat sequences flanking the insertion supports the speculation that these sequences are translocatable elements similar to procaryotic translocons.  相似文献   

6.
The nucleotide sequence of the fragment of the internal transcribed spacer (ITS) of rDNA comprising the full-length ITS1, the gene encoding 5.8S rRNA, and part of the ITS2 sequence was determined in 22 samples of five diploid Aegilops species. The full alignment length of compared sequences was 524 bp. Species-specific substitutions were found in the ITS nucleotide sequence of rDNA of different Aegilops species. Intraspecific differences in ITS structure in diploid Aegilops species were detected for the first time. Polymorphism of the ITS nucleotide sequence within the same sample was revealed, which might be due either to differences between the genomes of individual plants comprising the sample or to the presence of several types of ribosomal genes in the genome of one plant. In general, both interspecific and intraspecific variability of the ITS nucleotide sequences of rDNA is extremely low. In total, 26 variable sites, twelve of which were informative, were identified.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 193–197.Original Russian Text Copyright © 2005 by Goryunova, Chikida, Gori, Kochieva.  相似文献   

7.
The ribosomal DNA repeat units of two closely related species of the genus Fraxinus, F. excelsior and F. oxyphylla, were characterized. The physical maps were constructed from DNA digested with BamHI, EcoRI, EcoRV and SacI, and hybridized with three heterologous probes. The presence or the absence of an EcoRV restriction site in the 18s RNA gene characterizes two ribosomal DNA unit types found in both species and which coexist in all individuals. A third unit type appeared unique to all individuals of F. oxyphylla. It carries an EcoRI site in the intergenic spacer. Each type of unit displayed length variations. The rDNA unit length of F. excelsior and F. oxyphylla was determined with EcoRV restriction. It varied between 11kb and 14.5kb in F. excelsior and between 11.8kb to 13.8kb in F. oxyphylla. Using SacI restriction, at least ten spacer length variants were observed in F. excelsior, for which a detailed analysis was conducted. Each individual carries 2–4 length variants which vary by a 0.3-kb step multiple. This length variation was assigned to the intergenic spacer. By using the entire rDNA unit of flax as probe in combination with EcoRI restriction, each species can be unambiguously discriminated. The species-specific banding pattern was used to compare trees from a zone of sympatry between the two species. In some cases, a conflicting classification was obtained from morphological analysis and the use of the species-specific rDNA polymorphism. Implications for the genetic management of both species are discussed.  相似文献   

8.
Previous evidence has indicated that the 16S rRNA genes in certain species of Aeromonas may have a history of lateral transfer and recombination. A comparative analysis of patterns of 16S nucleotide sequence polymorphism among species of Rhizobium and Agrobacterium was conducted to determine if there is similar evidence for chimeric 16S genes in members of the Rhizobiaceae. Results from phylogenetic analyses and comparison of patterns of nucleotide sequence polymorphism in portions of rhizobial 16S genes revealed the same type of segment-dependent polymorphic site partitioning that was previously reported for Aeromonas. These results support the hypothesis that certain 16S segments in rhizobia may have a history of lateral transfer and recombination.Abbreviations 16S rRNA 16S ribosomal ribonucleic acid - 16S the 16S rRNA gene  相似文献   

9.
10.
The nucleotide sequence of a 7.4 kb region containing the entire plastid ribosomal RNA operon of the nongreen parasitic plant Epifagus virginiana has been determined. Analysis of the sequence indicates that all four rRNA genes are intact and almost certainly functional. In contrast, the split genes for tRNAIle and tRNAAla present in the 16S-23S rRNA spacer region have become pseudogenes, and deletion upstream of the 16S rRNA gene has removed a tRNAVal gene and most of the promoter region for the rRNA operon. The rate of nucleotide substitution in 16S and 23S rRNAs is several times higher in Epifagus than in tobacco, a related photosynthetic plant. Possible reasons for this, including relaxed translational constraints, are discussed.  相似文献   

11.
Organization of ribosomal RNA gene repeats of the mouse.   总被引:7,自引:3,他引:4       下载免费PDF全文
The organization of the ribosomal RNA (rRNA) genes of the mouse was determined by Southern blot hybridization using cloned rDNA fragments as probes, which could encompass the entire spacer region between two rRNA gene regions. The rRNA genes are organized into tandem repeats of nearly uniform length of about 44 kb. The heterogeneity detected in the nontranscribed spacer appears to be caused by its sequence rather than its length difference. At least three kinds of repetitive sequences are present in the non-transcribed spacer region; two of them are located 13 kb upstream from the 5'-end of 18S RNA gene and the other located 1 to 4 kb downstream from the 3'-end of 28S RNA gene.  相似文献   

12.
Cucurbitaceae are characterized by a high copy number for nuclear ribosomal RNA genes. We have investigated the genomic ribosomal DNA (rDNA) of four closely related species of this family with respect to structure, length heterogeneity, and evolution. InCucumis melo (melon) there are two main length variants of rDNA repeats with 10.7 and 10.55kb.Cucumis sativus (cucumber) shows at least three repeat types with 11.5, 10.5, and 10.2kb.Cucurbita pepo (zucchini) has two different repeat types with 10.0 and 9.3kb. There are also two different repeat types inCucurbita maxima (pumpkin) of about 11.2 and 10.5kb. Restriction enzyme mapping of the genomic rDNA of these four plants and of cloned repeats ofC. sativus shows further heterogeneities which are due to methylation or point mutations. By comparison of the restriction enzyme maps it was possible to trace some evolutionary events in the family ofCucurbitaceae. Some aspects of regulation and function of the middle repetitive rRNA genes (here between 2000 and 10000 copies) are discussed.  相似文献   

13.
14.
Velocity sedimentation studies of RNA of Sarcophaga bullata show that the major rRNA species have sedimentation values of 26S and 18S. Analysis of the rRNA under denaturing conditions indicates that there is a hidden break centrally located in the 26S rRNA species. Saturation hybridization studies using total genomic DNA and rRNA show that 0.08% of the nuclear DNA is occupied by rRNA coding sequences and that the average repetition frequency of these coding sequences is approximately 144. The arrangement of the rRNA genes and their spacer sequences on long strands of purified rDNA was determined by the examination of the structure of rRNa:DNA hybrids in the electron microscope. Long DNA strands contain several gene sets (18S + 26S) with one repeat unit containing the following sequences in order given: (a) An 18S gene of length 2.12 kb, (b) an internal transcribed spacer of length 2.01 kb, which contains a short sequence that may code for a 5.8S rRNA, (c) A 26S gene of length 4.06 kb which, in 20% of the cases, contains an intron with an average length of 5.62 kb, and (d) an external spacer of average length of 9.23 kb.  相似文献   

15.
Summary The relative rates of divergence of 11 regions of the wheat rDNA cloned in pTA250 were estimated by measuring sequence change in 6 Triticum species. The Tm analysis of 32P probes synthesized from the pTA250 regions and hybridized to DNA from the Triticum species provided an estimate of sequence change relative to T. aestivum. The results revealed a region of 1.2 kb preceding the 18S rRNA gene which was more conserved than the rest of the spacer. In addition the transcribed spacer between the 18S and 26S rRNA genes was shown to be poorly-conserved; the genes, as expected, were highly conserved. A model which proposes RNA as a co-factor in gene conversion is suggested to account for the observations.  相似文献   

16.
Scilla peruviana biotypes have different chromosome numbers due to changes in the nucleolar chromosomes and polyploidy. We have examined two diploid (2n = 15 and 2n = 16) and two tetraploid biotypes (2n = 28 and 2n = 32). From the results of rRNA/DNA filter hybridizations it appears that rDNA percentages of the diploid biotypes are, approximately, 2.2-fold higher than those of the tetraploid biotypes. To examine the rRNA gene structure we have utilizedSouthern blot hybridization after DNA digestions with three restriction enzymes: Eco RI, Hind III and Bam HI. From the band analysis of both single and double digestions it has been possible to reveal the presence, in the diploid biotypes, of three gene types, heterogeneous both for length and for nucleotide sequences in the external spacer. The three rRNA genes are 12 600, 12 700, and 12 800 base pairs long and they have a different position of the Hind III sites in the external spacer. On the other hand, a single gene type of 12 600 base pairs, identical to the first type of the diploid biotypes, surprisingly exists in the tetraploid biotypes. Considerations on the rRNA gene regulation and evolution are made.  相似文献   

17.
Summary A 5.3 kb DNA segment containing the str operon (ca. 4.5 kb) of the cyanobacterium Spirulina platensis has been sequenced. The str operon includes the structural genes rpsL (ribosomal protein S12), rpsG (ribosomal protein S7), fus (translation elngation factor EF-G) and tuf (translation elongation factor EF-Tu). From the nucleotide sequence of this operon, the primary structures of the four gene products have been derived and compared with the available corresponding structures from eubacteria, archaebacteria and chloroplasts. Extensive homologies were found in almost all cases and in the order S12>EF-Tu>EF-G>S7; the largest homologies were generally found between the cyanobacterial proteins and the corresponding chloroplast gene products. Overall codon usage in S. platensis was found to be rather unbiased.  相似文献   

18.
19.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I–VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type α and type β) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species.  相似文献   

20.
A 1.9 kb nucleotide sequence of part of the mitochondrial (mt) genome covering the cox1-trnT-rrnL-trnC-rrnS region, and the order of the remaining mitochondrial protein-coding genes for S. nasale of Sri Lankan origin, has been determined for analysis of the possible placement of this species in the genus Schistosoma. The gene order of this species is similar to that of the African and Indian Schistosoma species, but strikingly different from the East Asian species. Analysis of an alignment of the 1.9 kb sequence with available sequences from other schistosomes indicated affinities with S. spindale (found in Sri Lanka) and African species (in particular S. intercalatum and S. haematobium). Phylogenetic trees inferred from the alignment including 1 kb of RNA (transfer RNA and ribosomal RNA) sequence for 8 other Schistosoma spp. and Fasciola hepatica as an out-group revealed that S. nasale is placed proximally to S. spindale, S. intercalatum, S. haematobium and S. mansoni in the African sub-group while the East Asian species are more distant. S. incognitum lies basal to the combined African/Indian clade. The mtDNA analysis strongly supports the hypothesis that S. nasale is closely affiliated with the African/Indian schistosome group rather than the East Asian Schistosoma species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号