首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
Summary The nuclear rDNA units of species belonging to the genus Beta were characterized using heterologous probes of flax (entire unit and 25S) and sunflower (6.1-kb Eco fragment containing the 18S, the entire intergenic spacer (IGS) and a small piece of the 25S). The physical maps of one species from each section of the genus was constructed by localization of the EcoRI, BamHI, HindIII, KpnI and SacI restriction sites. For each species a single individual was used to obtain total DNA. The major unit length is 11 kb, but variant length units at 10.4, 10.7 and 11.3 kb were found as minor forms. However, some individuals carried the 10.4-kb or the 10.7-kb variant length unit as the major form. For the variant length units of one species the restriction sites were conserved, so that the variation in length occurred in the IGS. The EcoRI fragment corresponding to the intergenic spacer appeared to be the best indicator of variation. The variable sequence in the IGS sometimes generated new restriction sites for the Corollinae and mainly, did so, for the Vulgares relative to the Procumbentes. The variable sites were able, to differentiate the three sections and species within the sections. Corollinae species belong to two different groups according to the absence or the presence of the BamHI (B4) site. The Vulgares species contain several unit types. We proposed that all the unit types derived from a unique unit, V-11-2.3, by unequal crossing-overs or conversion. We also supposed a homogenization mechanism because we found individuals homogeneous for every unit type. Among the cultivated beets, all the root beets contain only one rDNA unit type, V-11-2.9. Thus, we supposed that the common unit type of cultivated beets either brings a physiological advantage or is strictly linked to a favorable allele. It is likely that the rDNA unit of B. maritima were eliminated from sugar beet by the breeding process since they were not recovered. Whatever the process, we deduced that all the cultivated forms of beets likely originated in a unique plant ascendant.A phylogenic tree of the genus is proposed, based on the nuclear rDNA maps, and subsequently discussed relative to the systematic tree and other molecular phylogenies.This work was supported by grant No. 9157A between INRA and the companies Deleplanque et Cie, SES France, Maribo France, Graines Franco Suédoises, KWS France and Van der Have France  相似文献   

2.
Estimates of the phylogenetic relationships among cultivated and wildAllium species would benefit from identification of objective molecular characters. Restriction fragment length polymorphisms in the nuclear 45s ribosomal DNA (rDNA) were identified among two of five accessions of each of six cultivated Alliums. Restriction enzyme sites forBamHI,DraI,EcoRI,EcoRV,SacI, andXbaI were mapped. Different lengths of the rDNA repeat unit among the cultivated Alliums were due to sizes of the intergenic spacer. Nineteen polymorphic restriction enzyme sites were discovered and used to estimate phylogenetic relationships. Cladistic analyses based on Wagner parsimony were completed without an outgroup and resulted in two equally most parsimonious trees of 22 steps. A combined analysis of differences at RE sites in the ribosomal (19 characters) and chloroplast (15 characters) DNA generated a single most parsimonious tree of 39 steps. Single trichotomies were observed at 40 and 41 steps. Strict consensus of the three trees of 41 or fewer steps consisted of a lineage forA. tuberosum, a second forA. ampeloprasum andA. sativum, and a third forA. cepa, A. fistulosum, andA. schoenoprasum. Estimates of phylogenetic relationships based on variability at restriction enzyme sites in the rDNA and chloroplast DNA agree with the classification scheme ofTraub. Because of the predominance of autapomorphies, restriction enzyme analysis of the nuclear 45s rDNA is of limited use in estimating phylogenies amongAllium sections. However it is useful in the establishment of interspecific hybridity.  相似文献   

3.
DNA restriction endonuclease fragment analysis was used to obtain new information on the genomic organization of ribosomal DNA (rDNA) of Brassica and allied genera. The total genomic DNA of 95 accessions of 52 species representing 16 genera was restricted with six enzymes, and the restriction fragments were probed with three ribosomal clones (pTA71, Ver 18‐6, and Ver 6‐5). Eleven repeat unit length classes were recognized. The repeat unit size classes of 8.9 kb and 9.5 kb were observed most commonly, being represented in 17 and 14 species, respectively. The restriction enzyme SacI produced three to six (generally three) bands with detectable hybridization to the probe pTA71. This probe–enzyme combination indicated a remarkable uniformity amongst Brassica and allied genera in the coding region of repeat units. By contrast, an extensive size variation in the restriction fragments could be localized in the intergenic spacer (IGS) region. Eleven IGS‐containing length variants were detected. Complex hybridization patterns, resulting from extensive repeat unit heterogeneity and taxon‐specific methylation of one or more cleavage sites, were obtained with the EcoRI + pTA71 combination. The relative homologies between the coding regions were evident from the presence of 1.5 kb in all the taxa, and 0.4‐, 1.3‐, and 1.7‐kb fragments in 33, 27, and 24 species, respectively. The SacI + pTA71 and EcoRI + pTA71 combinations were generally able to distinguish taxa both within and between genera. Three restriction endonuclease digests probed with three ribosomal clones yielded essentially identical fragmentation patterns across all the accessions within the cultivated species Brassica campestris, B. oleracea, and B. juncea. In B. napus, three and seven accessions exhibited restriction profiles similar to one and both diploid progenitor species, respectively. Overall, rDNA repeat unit length polymorphism showed good correlation with the cytodeme‐based classification of Brassica and allied genera. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 545–557.  相似文献   

4.
The 6.8-kb rDNA intergenic spacer region of F. excelsior was isolated from a CsCl/actinomycin-D gradient and cloned into pUC18 for further characterization. We observed the presence of subrepeats delimited by HaeIII enzyme sites. These subrepeats were sub-cloned and 11 clones were sequenced. These corresponded to subrepeated elements of either 32 bp or 41 bp that shared a 23-bp common sequence in the 5 end. Within each family of subrepeats, the percentage of common nucleotides was 84.4% for the 5 32-bp subrepeats and 67.4% for the 640-bp subrepeats. Non-repeated HaeIII fragments of 450 bp and 650 bp were also sub-cloned. To compare homology at the IGS region between the rDNA spacers of F. excelsior and the three related species (F. oxyphylla, F. americana, F. ornus), we conducted Southern hybridization analyses using each member of the 32-bp and 40-bp subrepeat families and the unique 450-bp and 650-bp fragments as probes. These analyses indicated that (1) the American ash is more genetically distant from the other three species that the latter are from each other and (2) F. oxyphylla and F. excelsior are more closely related to each other than to F. ornus.  相似文献   

5.
The structural organization of the nuclear ribosomal DNA (rDNA) of Humulus lupulus, H. japonicus and Cannabis sativa was determined by restriction site mapping. A high degree of DNA sequence similarity was evident in the coding regions of the rDNA repeats of the taxa and supports the placement of Cannabis and Humulus in one family, Cannabaceae. However, the presence of a BstEII site, an additional SacI site, absence of the SpeI site and positional differences of the SspI sites in the 25 S gene distinguished H. japonicus from H. lupulus. Humulus lupulus has an additional EcoRV site in the IGS region. A XhoI site in the 18S region of C. sativa distinguishes it from the two hop species. The diagnostic differences in the IGS of C. sativa include the EcoRI, HindIII and XhoI sites. These sites were not detected in the IGS of the two hop species.  相似文献   

6.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

7.
8.
Variation in ribosomal DNA spacer length was analysed in 23 populations of 12Secale spp. by restriction enzyme analysis. Digestion of rDNA with Taq I endonuclease enzyme yields spacer fragments that include the subrepeat array and the non-repetitive region downstream of the array. Extensive spacer length variation existed in most species with Taq I fragment lengths ranging from 0.9–3.1 kb. These length variants have been attributed to the differences in number of 134 bp spacer subrepeats within rDNA arrays.S. silvestre was the only species to exhibit a unique spacer length variant of 0.9 kb and this was shown to result from the presence of an extra Taq I site in the spacer. rDNA spacer length frequencies were determined for the species. These frequencies were used to derive phenetic relationships between the species by numerical taxonomic methods. In plots constructed fromGower's distance matrices,S. silvestre appeared well separated from the major cluster consisting of the other species. On the basis of morphological and cytogenetic criteria,S. silvestre is considered the most ancient species. The rDNA data is consistent with this interpretation as it shows a clear differentiation ofS. silvestre from all the other species based on length and nucleotide sequence composition of the spacer region.  相似文献   

9.
Mitochondrial DNA (mtDNA) from the cryptomonad Pyrenomonas salina was isolated by CsCl-buoyant density centrifugation of whole-cell DNA in the presence of Hoechst dye 33258. mtDNA consists of circular molecules about 47 kb in size as estimated from restriction enzyme analysis. A physical map for six restriction enzymes (Bam HI, Bge I, Eco RI, Pst I, Sac I and Sac I) has been constructed. Genes coding for the small subunit of rRNA, cytochrome oxidase subunits I and II, and apocytochrome b were localized on this map using Southern blot hybridization with heterologous gene probes from Oenothera. Genes for 5S rRNA and NADH dehydrogenase subunit 5 are absent from P. salina mtDNA. The mitochondrial genome, being the first analysed to this extent in chromophytic algae, should be valuable for taxonomic and phylogenetic studies.  相似文献   

10.
Seven isolates of Fusarium oxysporum f. sp. ciceris, representing pathogenic races 1 , 2, 3, and 4 from India and 0, 5, and 6 from Spain, were assayed for restriction fragment length polymorphisms (RFLPs) in the mitochondrial DNA,(mt DNA). The mt DNA fraction of total fungal DNA was purified and digested with the restriction endonucleases Bam HI, Bgl II, Eco RI. Kpn I, Sac I, Sal I, Sma I, and Xho I. The mt DNA is a circular molecule of 40.5 kb. No RFLP in the mt DNA was detected among the seven races of F. o. ciceris. The identical restriction patterns of mt DNA indicates an extensive conservation in the gene composition of mt DNA without sequence variation, and suggests that mt DNA of F. o. ciceris may not be responsible for pathogenic diversity. The restriction map of mt DNA from the race 6 isolate Fo 8272 was constructed by digestion of the mt DNA with five restriction enzymes: Eco RI, Kpn I, Sac I, Sal I, and Xho I, either singly or in selected pairs.  相似文献   

11.
Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.  相似文献   

12.
In the present report, a total of 75 Fusarium spp isolates (35 of the Gibberella fujikuroi species complex, 26 of F. oxysporum, 7 of F. graminearum, 5 of F. culmorum, 1 of F. cerealis, and 1 of F. poae) from different hosts were characterized morphologically, physiologically and genetically. Morphological characterization was performed according to macroscopic and microscopic aspects. Physiological characterization was based on their ability to produce fumonisin B1 (FB1), fumonisin B2 (FB2), zearalenone (ZEA) and type B trichothecenes (deoxynivalenol, nivalenol and 3-acetyldeoxynivalenol). FB1, FB2, and ZEA were determined by liquid chromatography and trichothecenes by gas chromatography. Molecular characterization of isolates was carried out using an optimized and simple method for isolation of DNA from filamentous fungi and polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) of the intergenic spacer region (IGS) of the rDNA. The results indicated that G. fujikuroi complex isolates can be␣divided into low and high fumonisin producers. The haplotypes obtained with HhaI, EcoRI, AluI, PstI and XhoI enzymes provided very characteristic groupings of G. fujikuroi isolates as a function of host type and fumonisin producing capacity. F. graminearum, F. culmorum and F. cerealis isolates were high ZEA␣and type B trichothecene producers, while F. oxysporum and the G. fujikuroi complex isolates did not show this ability. The haplotypes obtained with CfoI, AluI, HapII, XhoI, EcoRI and PstI enzymes permitted to discern these five Fusarium species and G. fujikuroi complex isolates but the restriction patterns of the IGS region did not show any relationship with the geographic origin of isolates.  相似文献   

13.
Restriction endonuclease fragment analysis of nuclear ribosomal DNA (rDNA) was completed on 25 individuals each from seven populations of theLisianthius skinneri (Gentianaceae) species complex in Panama. Seven restriction enzymes were used to determine the amount and type of rDNA variation within and among individuals of the populations. No restriction site variation was seen within populations or individuals although site differences were seen among populations. Spacer length variation within and among individuals of populations was mapped to the internal transcribed spacer (ITS) region between the 18S and 5.8S rRNA genes, a region inLisianthius rDNA that previously was shown to exhibit length differences among populations. This is the first reported case of such variation within and among individuals of populations for the ITS region. Presence or absence of ITS spacer length variation is not correlated with levels of isozymic heterozygosity within populations. No detectable length variation within individuals or populations was seen in the larger intergenic spacer (IGS). Although populations varied with respect to IGS length, all individuals of a given population had a single and equivalent IGS length.  相似文献   

14.
Chromosomes and Ti plasmids of 41 Agrobacterium strains, belonging to biovars 1, 2, 3, and Agrobacterium rubi species were characterized by the restriction fragment length polymorphism of PCR-amplified DNAs. Profiles that were obtained by the analysis of the amplified 16S rDNA confirmed the grouping of the strains according to their species. Higher polymorphism was detected in the intergenic spacer between the 16S rDNA and 23S rDNA genes, allowing efficient discrimination of strains. Identification of most strains was possible, and the genetic relatednesses of Agrobacterium strains could be estimated. The analysis of the plasmid Ti encoded regions between the tmr and nos genes, and the virA and virB2 genes, allowed fingerprinting of Ti plasmids. Genomic typing by the rapid PCR-RFLP method is thus shown to be useful for an independant identification of strains and of the conjugative Ti plasmids.Abbreviations PCR polymerase chain reaction - RFLP restriction fragment length polymorphism - IGS intergenic spacer Funded by Institut National de la Recherche Agronomique  相似文献   

15.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

16.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

17.
18.
The restriction endonucleases Hpa II and Msp I were used to examine cytosine methylation in the ribosomal RNA genes (rDNA) of inbred lines of maize and species of teosinte. In all of the rDNAs examined, Msp I (not sensitive to mCpG) digestion yielded a distribution of lower molecular weight fragments indicative of multiple recognition sites. The majority of the rDNA arrays in an individual were inaccessible to Hpa II (sensitive to mCpG) cleavage, but a significant fraction (10–25%) was cleaved at least once by Hpa II into repeat unit length fragments (9.1 kbp). In some maize inbred lines, one or two additional fragment populations (less than 9.1 kbp in length) were also produced by Hpa II digestion. All of the unmethylated Hpa II sites mapped to the intergenic spacer (IGS), and the major unmethylated site was located approximately 800 bp 5 to the start of the 18S RNA coding sequence. An Eco RI polymorphism, present in the 26S gene of certain inbred lines and hybrids, was utilized to investigate the organization of unmethylated repeat units in the rDNA array. In double digest experiments with Hpa II/Eco RI, the fragments from repeat units with two Eco RI sites were sensitive to Hpa II digestion, whereas, the fragments from repeat units with a single Eco RI site were almost completely resistant to Hpa II digestion. Similar digestion patterns were also observed in Eco RII (sensitive to mCNG)/Eco RI digests. These results suggest that unmethylated and Eco RI polymorphic sites occur in the same repeat units.  相似文献   

19.
G. F. Tucci  F. Maggini 《Protoplasma》1986,132(1-2):76-84
Summary By means of Southern blot hybridization, the structure of the ribosomal DNA in six species of theCynareae tribe has been analyzed. Artichoke and wild artichoke possess only one type of ribosomal genes 13 kb long;Onopordum acanthium has at least two types of rDNA repeats 9.9 kb and 10.3 kb long andO. illyricum has a third gene type 9.7 kb long; inGalactites tomentosa there are at least four ribosomal gene types of 10.9, 11.6, 11.5, and 10kb;Carduus nutans possesses two ribosomal gene types of the same length of 12.5 kb that vary in the nucleotide sequence of the external spacer. The rRNA genes of all the species studied have an identical restriction mapping in the 18 S and 25 S regions, differences in length and/or nucleotide sequence are present in the external spacer.  相似文献   

20.
The taxonomy of the genusQuercus is still unclear. In order to elucidate the taxonomy of Mediterranean oaks we have analyzed ribosomal RNA genes ofQuercus cerris, Q. coccifera, Q. trojana, Q. ilex, Q. suber, andQ. macrolepis by means of Southern blot hybridization. Oak nuclear DNA was extracted from root tips of 300 acorns and from catkins of single plants. EcoRI and BamHI restriction endonucleases were used. DNA electrophoresis and rRNA/DNA hybridization were performed usingVicia faba rRNA 18 S and 25 S as probes. The rRNA genes of all the species studied have an identical restriction mapping in the 18 S and 25 S regions, while differences in length are present in the intergenic regions.Q. cerris possesses at least four types of genes of 12.1, 11.5, 8.5, and 8.3 kb;Q. coccifera at least three types of 12.4, 10.4, and 10.1 kb;Q. trojana possesses the same rRNA genes asQ. cerris plus another gene type 12.0 kb long, with EcoRI and BamHI restriction sites in the intergenic spacer;Q. ilex at least three types of 12.4, 10.85, and 9.5 kb;Q. suber at least five types of 11.5, 11.0, 8.6, 8.5, and 8.3 kb;Q. macrolepis, finally, at least seven types of 11.5, 11.0, 10.2, 8.6, 8.5, 8.3, and 8.15 kb.Q. coccifera andQ. ilex rDNA appears quite different respect to other species examined, while high similarity seems to exist betweenQ. cerris, Q. trojana, Q. suber, andQ. macrolepis. These results are in agreement with the taxonomic model proposed bySchwarz for the genusQuercus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号