首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Salicylic acid (SA) induces stomatal closure sharing several components with abscisic acid (ABA) and methyl jasmonate (MeJA) signaling. We have previously shown that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signaling and MeJA signaling in Arabidopsis thaliana. In this study, we examined whether these two MAPKs are involved in SA-induced stomatal closure using genetic mutants and a pharmacological, MAPKK inhibitor. Salicylic acid induced stomatal closure in mpk9 and mpk12 single mutants but not in mpk9 mpk12 double mutants. The MAPKK inhibitor PD98059 inhibited SA-induced stomatal closure in wild-type plants. Salicylic acid induced extracellular reactive oxygen species (ROS) production, intracellular ROS accumulation, and cytosolic alkalization in the mpk9, mpk12, and mpk9 mpk12 mutants. Moreover, SA-activated S-type anion channels in guard cells of wild-type plants but not in guard cells of mpk9 mpk12 double mutants. These results imply that MPK9 and MPK12 are positive regulators of SA signaling in Arabidopsis guard cells.  相似文献   

2.
We report that two mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate abscisic acid (ABA)‐induced stomatal closure in Arabidopsis thaliana. Yeast elicitor (YEL) induced stomatal closure accompanied by intracellular reactive oxygen species (ROS) accumulation and cytosolic free calcium concentration ([Ca2+]cyt) oscillation. In this study, we examined whether these two MAP kinases are involved in YEL‐induced stomatal closure using MAPKK inhibitors, PD98059 and U0126, and MAPK mutants, mpk9, mpk12 and mpk9 mpk12. Both PD98059 and U0126 inhibited YEL‐induced stomatal closure. YEL induced stomatal closure in the mpk9 and mpk12 mutants but not in the mpk9 mpk12 mutant, suggesting that a MAPK cascade involving MPK9 and MPK12 functions in guard cell YEL signalling. However, YEL induced extracellular ROS production, intracellular ROS accumulation and cytosolic alkalisation in the mpk9, mpk12 and mpk9 mpk12 mutants. YEL induced [Ca2+]cyt oscillations in both wild type and mpk9 mpk12 mutant. These results suggest that MPK9 and MPK12 function redundantly downstream of extracellular ROS production, intracellular ROS accumulation, cytosolic alkalisation and [Ca2+]cyt oscillation in YEL‐induced stomatal closure in Arabidopsis guard cells and are shared with ABA signalling.  相似文献   

3.
Methyl jasmonate (MeJA) and abscisic acid (ABA) signalling cascades share several signalling components in guard cells. We previously showed that two guard cell‐preferential mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signalling in Arabidopsis thaliana. In this study, we examined whether these two MAP kinases function in MeJA signalling using genetic mutants for MPK9 and MPK12 combined with a pharmacological approach. MeJA induced stomatal closure in mpk9‐1 and mpk12‐1 single mutants as well as wild‐type plants, but not in mpk9‐1 mpk12‐1 double mutants. Consistently, the MAPKK inhibitor PD98059 inhibited the MeJA‐induced stomatal closure in wild‐type plants. MeJA elicited reactive oxygen species (ROS) production and cytosolic alkalisation in guard cells of the mpk9‐1, mpk12‐1 and mpk9‐1 mpk12‐1 mutants, as well in wild‐type plants. Furthermore, MeJA triggered elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in the mpk9‐1 mpk12‐1 double mutant as well as wild‐type plants. Activation of S‐type anion channels by MeJA was impaired in mpk9‐1 mpk12‐1. Together, these results indicate that MPK9 and MPK12 function upstream of S‐type anion channel activation and downstream of ROS production, cytosolic alkalisation and [Ca2+]cyt elevation in guard cell MeJA signalling, suggesting that MPK9 and MPK12 are key regulators mediating both ABA and MeJA signalling in guard cells.  相似文献   

4.
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.  相似文献   

5.
CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss‐of‐function mutants were sensitivity to drought stress. CLE9‐induced stomatal closure was impaired in abscisic acid (ABA)‐deficient mutants, indicating that ABA is required for CLE9‐medaited guard cell signalling. We further deciphered that two guard cell ABA‐signalling components, OST1 and SLAC1, were responsible for CLE9‐induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase‐deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA‐dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.  相似文献   

6.
MAP kinases have been linked to guard cell signalling. Arabidopsis thaliana MAP Kinase 3 (MPK3) is known to be activated by abscisic acid (ABA) and hydrogen peroxide (H(2)O(2)), which also control stomatal movements. We therefore studied the possible role of MPK3 in guard cell signalling through guard cell-specific antisense inhibition of MPK3 expression. Such transgenic plants contained reduced levels of MPK3 mRNA in the guard cells and displayed partial insensitivity to ABA in inhibition of stomatal opening, but responded normally to this hormone in stomatal closure. However, ABA-induced stomatal closure was reduced compared with controls when cytoplasmic alkalinization was prevented with sodium butyrate. MPK3 antisense plants were less sensitive to exogenous H(2)O(2), both in inhibition of stomatal opening and in promotion of stomatal closure, thus MPK3 is required for the signalling of this compound. ABA-induced H(2)O(2) synthesis was normal in these plants, indicating that MPK3 probably acts in signalling downstream of H(2)O(2). These results provide clear evidence for the important role of MPK3 in the perception of ABA and H(2)O(2) in guard cells.  相似文献   

7.
Bacteria and fungi are capable of triggering stomatal closure through pathogen-associated molecular patterns (PAMPs), which prevents penetration through these pores. Therefore, the stomata can be considered part of the plant innate immune response. Some pathogens have evolved mechanisms to evade stomatal defense. The bacterial pathogen Xanthomonas campestris pv. campestris (Xcc), which infects plants of the Brassicaceae family mainly through hydathodes, has also been reported to infect plants through stomata. A recent report shows that penetration of Xcc in Arabidopsis leaves through stomata depends on a secreted small molecule whose synthesis is under control of the rpf/diffusible signal factor (DSF) cell-to-cell signaling system, which also controls genes involved in biofilm formation and pathogenesis. The same reports shows that Arabidopsis ROS- and PAMP-activated MAP kinase 3 (MPK3) is essential for stomatal innate response. Other recent and past findings about modulation of stomatal behaviour by pathogens are also discussed. In all, these findings support the idea that PAMP-triggered stomatal closure might be a more effective and widespread barrier against phytopathogens than previously thought, which has in turn led to the evolution in pathogens of several mechanisms to evade stomatal defense.Key words: arabidopsis, stomata, xanthomonas, plant defense, DSF, rpf genesStomata are small pores located on the leaf surface that allow plants to exchange gases with the environment. They play an essential role in the intake of CO2 for photosynthesis, but at the same time they allow water loss by transpiration. Their position at the interface between internal plant tissues and the environment make them convenient gates for endophytic colonization by phytopathogens. For this reason plants have evolved the capacity to adjust stomatal apertures not only in response to hormones like abscisic acid (ABA) and to diverse environmental factors such as light, air humidity and carbon dioxide but also in response to pathogens. Past studies, conducted with fungal and bacterial pathogens that enter leaves through stomata, have shown that many of these organisms display tropic movements towards them. After infection, these microorganisms may affect stomatal behavior in diverse ways, a fact which has been attributed to the interplay between fungal and plant compounds secreted during the plant-pathogen interaction (reviewed in ref. 1). The effect of some of these purified compounds on stomatal movements has been reported. For example, the fungal elicitors oligogalacturonic acid and chitosan,2 as well as the bacterial toxin syringomycin,3 trigger stomatal closure, while Pseudomonas syringae pv. tomato (Pst) derived coronatine4 and Fusicoccum amygdali derived fusicoccin5 promote stomatal opening. In spite of these findings, the role of stomata in the defense against pathogens have often been overlooked.6 However, the recent finding that the ubiquitously present bacterial pathogen-associated molecular patterns (PAMPs) flagellin and lipopolysaccharide (LPS) are capable of triggering stomatal closure provided convincing evidence that stomata effectively function as part of the plant innate immunity.7 In the same study it was shown that coronatine, whose chemical structure is similar to methyl jasmonate, can revert bacteria- induced stomatal closure, allowing Pst to gain access into leaves even after initial stomatal response.Only relatively high concentrations of bacteria have been reported to trigger stomatal closure (107–108 c.f.u./ml),5,7 which might explain why the normal microbial flora living on the phylloplane does not promote stomatal closure. Biofilm formation, which leads to bacterial aggregation, not only improves epiphytic survival of bacteria such as the phytopathogen Xanthomonas axonopodis pv. citri,8 but also appears to be a prerequisite for endophytic colonization by some pathogenic and beneficial endophytes.9 In the bacterial pathogen Xanthomonas campestris pv campestris (Xcc), the rpf/DSF cell-to-cell signaling system controls the bacterial density dependent expression of many genes required for pathogenicity and environmental adaptation.1012 Some of these genes, like those involved in the synthesis of the extracellular polysaccharide xanthan, are also essential for biofilm formation.13,14Xcc uses hydathode pores as main route on endophytic colonization of Brassicaceae, however, it has also been reported that can penetrate leaves through stomata, at least under certain conditions.15 For this reason, we investigated if penetration of Xcc through stomata can occur passively, when either environmental or physiological conditions favors stomatal opening, or if on the contrary this process is aided by some compound similar to coronatine or fusicoccin.We found that the Xcc is capable of manipulating stomatal closure of Arabidopsis through a secreted small molecule whose production is under control of the rpf/DSF gene cluster.16 Both living Xcc and an extract from an Xcc culture supernatant, can inhibit PAMP- and ABA-induced stomatal closure in Arabidopsis. By contrast, rpfF and rpfC Xcc mutants, affected in respectively the synthesis and perception of the cell-to-cell communication signal cis-11-methyl-2-dodecenoic acid, cannot interfere with stomatal movements. The secreted factor most likely plays an important role in virulence, as Xcc supernatant extracts enhanced the ability of a Pseudomonas syringae pv. tomato (Pst) coronatine deficient mutant to penetrate Arabidopsis leaves.In addition, in our work we provide evidence that Arabidopsis reactive oxygen species (ROS)- and PAMP-activated MPK3 is required for PAMP triggered stomatal closure, as plants expressing a guard cell-specific antisense construct against its coding gene are unable to close stomata in response to bacteria or purified LPS, although they still respond to ABA. Our unpublished observations show that these antisense plants are also unresponsive to the epiphytic fungus Saccharomyces cerevisiae induced stomatal closure, indicating MPK3 integrates information coming from different receptors involved in pathogen perception.Since different pathogens and elicitors induce ROS production, it is likely that these compounds act as a signaling link between elicitor perception and MPK3 activation in guard cells. In agreement with this hypothesis, the yeast derived elicitor and chitosan, both capable of triggering plant defense responses, also cause an elevation in guard cell free cytosolic Ca2+.17 This increase depends on the presence of cytosolic NAD(P)H, the substrate of the NAD(P)H oxidases involved in ROS production. Increases in both ROS and free cytosolic Ca2+ are linked to ABA-induced stomatal closure.18 However, antisense MPK3 plants showed normal promotion of closure in response to ABA but no response to phytopathogens or to H2O2. How can this apparent paradox be solved? As ABA is known to trigger many different signaling events within guard cells, we propose that ABA signaling acts redundantly to promote closure in guard cells, while signaling of PAMPs in these cells relies absolutely on H2O2, making the presence of MPK3 a necessary requirement for pathogen-induced stomatal closure. Interestingly, MPK3 antisense plants also turned out to be insensitive to the Xcc factor in ABA-induced promotion of closure, which suggests that the Xcc factor targets some signaling component acting on the same pathway as MPK3.H2O2 has been shown to inhibit guard cell H+-ATPase activity, 19 it might be possible that the Xcc factor acts by indirectly relieving pathogen-induced, H2O2-mediated, inactivation of H+-ATPase activity. In agreement with this proposal, it has been recently found that Arabidopsis RIN4, a negative regulator of plant immunity, is expressed in guard cells and upregulates PM H+-ATPase activity,20 rin4 mutant stomata can not be reopened by virulent Pst, indicating that these plants are insensitive to coronatine. The fusicoccin toxin also inhibits H+-ATPase, although by a different mechanism that involves direct binding to this protein.21The cell-to-cell signaling system rpf/DSF regulates in a cell density dependent manner the expression of several genes involved in biofilm formation and endophytic colonization, including the suppressors of plant defenses, xanthan and β-cyclic glucan.22,23 The factor capable of modulating stomatal responses also suppresses plant innate immunity, and therefore explains one of the multiple mechanisms by which the rpf/DSF gene cluster coordinates endophytic colonization of Xcc. While biofilm formation helps endophytic colonization, it is unlikely that it is a prerequisite for bacterial penetration through stomata, since this can take place in isolated epidermis aided without biofilm formation, provided that coronatine7 or the Xcc factor16 are present. Furthermore, even rpfF or rpfC mutants, unable to synthesize or perceive the Xcc cell-to-cell signaling molecule DSF, are capable of migrating through isolated epidermis in the presence of a wt Xcc extract.The chemical nature of the Xcc factor has not been elucidated yet. While preliminary characterization indicates that it shares some common properties with coronatine (has a MW of <2,000 kD, and can be extracted from culture supernatants with ethyl acetate), it is unlikely that they are the same molecule, as the enzymes required for coronatine biosynthesis are encoded in a plasmid or chromosome of only some pathovars of P. syringae. The fungal toxin fusicoccin is also probably different from the Xcc factor as, unlike this, it causes a very strong promotion of stomatal opening.Recently, it has been reported that the phytopathogenic fungi Rhynchosporium secalis and Plasmopara viticola can modulate stomatal behaviour24 and that oxalic acid, a virulence factor produced by many fungi, can promote stomatal opening.25 In addition, the human pathogen Salmonella enterica displays tropism towards photosynthetically active lettuce guard cells and possesses the ability of penetrating through them—suggesting that it may have some mechanism to disable stomatal defense.26 While S. enterica is not a plant pathogen, endophytic colonization may be an important part of it life cycle, before being eaten by a host animal. The examples mentioned above rise the interesting possibility that mechanisms to overcome stomatal innate defense may be more common than previously thought, and that they might have evolved independently in different pathogens. Characterization of more pathogen molecules involved in modulation of stomatal defense and of their targets inside guard cells might provide exciting new tools to study stomatal physiology, as well as helping in the discovery of new strategies to prevent pathogen penetration inside leaves.  相似文献   

8.
Mitogen-activated protein kinases (MPKs) have roles in regulating developmental processes and responses to various stimuli in plants. Activations of some MPKs are necessary for proper responses to hyperosmolarity and to a stress-related phytohormone, abscisic acid (ABA). However, there is no direct evidence that MPK activations are regulated by drought and rehydration. Here we show that the activation state of one of the Arabidopsis MPKs, MPK6, is directly regulated by drought and rehydration. An immunoblot analysis using an anti-active MPK antibody detected drought-induced activation and rehydration-induced inactivation of MPK6. MPK6 was activated by drought even in an ABA-deficient mutant, aba2-4. In addition, exogenously added ABA failed to suppress the rehydration-dependent inactivation of MPK6. Under drought conditions, elevated levels of reactive oxygen species (ROS), which are known elicitors of MPK6 activation, were detected in both wild type and an MPK6-deficient mutant, mpk6-4. These results suggest that ROS, but not ABA, induces MPK6 activation as an upstream signal under drought conditions.  相似文献   

9.
We found that glutathione (GSH) is involved in abscisic acid (ABA)-induced stomatal closure. Regulation of ABA signaling by GSH in guard cells was investigated using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase, and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). Glutathione contents in guard cells decreased along with ABA-induced stomatal closure. Decreasing GSH by both the cad2-1 mutation and CDNB treatment enhanced ABA-induced stomatal closure. Glutathione monoethyl ester (GSHmee) restored the GSH level in cad2-1 guard cells and complemented the stomatal phenotype of the mutant. Depletion of GSH did not significantly increase ABA-induced production of reactive oxygen species in guard cells and GSH did not affect either activation of plasma membrane Ca2+-permeable channel currents by ABA or oscillation of the cytosolic free Ca2+ concentration induced by ABA. These results indicate that GSH negatively modulates a signal component other than ROS production and Ca2+ oscillation in ABA signal pathway of Arabidopsis guard cells.  相似文献   

10.
Plants tightly control stomatal aperture in response to various environmental changes. A drought-inducible phytohormone, abscisic acid (ABA), triggers stomatal closure and ABA signaling pathway in guard cells has been well studied. Similar to ABA, methyl jasmonate (MeJA) induces stomatal closure in various plant species but MeJA signaling pathway is still far from clear. Recently we found that Arabidopsis calcium dependent protein kinase CPK6 functions as a positive regulator in guard cell MeJA signaling and provided new insights into cytosolic Ca2+-dependent MeJA signaling. Here we discuss the MeJA signaling and also signal crosstalk between MeJA and ABA pathways in guard cells.Key words: methyl jasmonate, abscisic acid, guard cell, reactive oxygen species, nitric oxide, calciumStomata, which are formed by pairs of specialized cells called guard cells, control gas exchanges and transpirational water loss. Guard cells can shrink and swell in response to various physiological stimuli, resulting in stomatal closing and opening.1,2 To optimize growth under various environmental conditions, plants have developed fine-tuned signal pathway in guard cells. Abscisic acid (ABA) is synthesized under drought stress and induces stomatal closure to reduce transpirational water loss.2 ABA signal transduction in guard cells has been widely studied. ABA induces increases of various second messengers such as cytosolic Ca2+, reactive oxygen species (ROS) and nitric oxide (NO) in guard cells. These early signal components finally evoke ion efflux through plasma membrane ion channels, resulting in reduction of guard cell turgor pressure.Jasmonates are plant hormones synthesized via the octadecanoid pathway and regulate various physiological processes in plants such as pollen maturation, tendril coiling, senescence and responses to wounding and pathogen attacks.3 Similar to ABA, jasmonates also trigger stomatal closure and the response is conserved among various plant species including Arabidopsis thaliana,4 Hordeum vulgare,5 Commelina benghalensis,6 Vicia faba,7 Nicotiana glauca,8 Paphiopedilum Supersuk9 and Paphiopedilum tonsum.9 A volatile methyl ester of jasmonic acid (JA), methy jasmonate (MeJA), has been widely used for studying jasmonate signaling pathway. To date, pharmacological and reverse genetic approaches have revealed many important signal components involved in MeJA-induced stomatal closure and suggest a signal crosstalk between MeJA and ABA in guard cells. In this review, we mainly focus on the three important second messengers, ROS, NO and cytosolic Ca2+ and discuss recent advance about MeJA signaling and signal interaction between MeJA and ABA in guard cells.  相似文献   

11.
Stomatal movement and density influence plant water use efficiency and thus biomass production. Studies in model plants within controlled environments suggest MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) may be crucial for stomatal regulation. We present functional analysis of MPK4 for hybrid aspen (Populus tremula × tremuloides) grown under natural field conditions for several seasons. We provide evidence of the role of MPK4 in the genetic and environmental regulation of stomatal formation, differentiation, signaling, and function; control of the photosynthetic and thermal status of leaves; and growth and acclimation responses. The long-term acclimation manifested as variations in stomatal density and distribution. Short-term acclimation responses were derived from changes in the stomatal aperture. MPK4 localized in the cytoplasm of guard cells (GCs) was a positive regulator of abscisic acid (ABA)-dependent stomatal closure and nitric oxide metabolism in the ABA-dependent pathways, while to a lesser extent, it was involved in ABA-induced hydrogen peroxide accumulation. MPK4 also affected the stomatal aperture through deregulation of microtubule patterns and cell wall structure and composition, including via pectin methyl-esterification, and extensin levels in the GC wall. Deregulation of leaf anatomy (cell compaction) and stomatal movement, together with increased light energy absorption, resulted in altered leaf temperature, photosynthesis, cell death, and biomass accumulation in mpk4 transgenic plants. Divergence between absorbed energy and assimilated energy is a bottleneck, and MPK4 can participate in the control of energy dissipation (thermal effects). Furthermore, MPK4 can participate in balancing the photosynthetic energy distribution via its effective use in growth or redirection to acclimation/defense responses.

MITOGEN-ACTIVATED PROTEIN KINASE 4 plays a multilevel role in stomatal formation, function, and signaling in the photosynthetic and thermal status of leaves and in growth and acclimation responses.  相似文献   

12.
13.
Glutathione (GSH) has been shown to negatively regulate methyl jasmonate (MeJA)-induced stomatal closure. We investigated the roles of GSH in MeJA signaling in guard cells using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase. MeJA-induced stomatal closure and decreased GSH contents in guard cells. Decreasing GSH by the cad2-1 mutation enhanced MeJA-induced stomatal closure. Depletion of GSH by the cad2-1 mutation or increment of GSH by GSH monoethyl ester did not affect either MeJA-induced production of reactive oxygen species (ROS) or MeJA-induced cytosolic alkalization in guard cells. MeJA and abscisic acid (ABA) induced stomatal closure and GSH depletion in atrbohD and atrbohF single mutants but not in the atrbohD atrbohF double mutant. Moreover, exogenous hydrogen peroxide induced stomatal closure but did not deplete GSH in guard cells. These results indicate that GSH affects MeJA signaling as well as ABA signaling and that GSH negatively regulates a signal component other than ROS production and cytosolic alkalization in MeJA signal pathway of Arabidopsis guard cells.  相似文献   

14.
Cadmium (Cd) is a non-essential toxic heavy metal that influences normal growth and development of plants. However, the molecular mechanisms by which plants recognize and respond to Cd remain poorly understood. We show that, in Arabidopsis, Cd activates the mitogen-activated protein kinases, MPK3 and MPK6, in a dose-dependent manner. Following treatment with Cd, these two MAPKs exhibited much higher activity in the roots than in the leaves, and pre-treatment with the reactive oxygen species (ROS) scavenger, glutathione, effectively inhibited their activation. These results suggest that the Cd sensing signaling pathway uses a build-up of ROS to trigger activation of Arabidopsis MPK3 and MPK6.  相似文献   

15.
Intracellular components in methyl jasmonate (MeJA) signaling remain largely unknown, to compare those in well-understood abscisic acid (ABA) signaling. We have reported that nitric oxide (NO) is a signaling component in MeJA-induced stomatal closure, as well as ABA-induced stomatal closure in the previous study. To gain further information about the role of NO in the guard cell signaling, NO production was examined in an ABA- and MeJA-insensitive Arabidopsis mutant, rcn1. Neither MeJA nor ABA induced NO production in rcn1 guard cells. Our data suggest that NO functions downstream of the branch point of MeJA and ABA signaling in Arabidopsis guard cells.Key words: abscisic acid, Arabidopsis thaliana, guard cells, methyl jasmonate, nitric oxideStomatal pores that are formed by pairs of guard cells respond to various environmental stimuli including plant hormones. Some signal components commonly function in MeJA- and ABA-induced stomatal closing signals,1 such as cytosolic alkalization, ROS generation and cytosolic free calcium ion elevation. Recently, we demonstrated that NO functions in MeJA signaling, as well as ABA signaling in guard cells.2NO production by nitric oxide synthase (NOS) and nitrate reductase (NR) plays important roles in physiological processes in plants.3,4 It has been shown that NO functions downstream of ROS production in ABA signaling in guard cells.5 NO mediates elevation of cytosolic free Ca2+ concentration ([Ca2+]cyt), inactivation of inward-rectifying K+ channels and activation of S-type anion channels,6 which are known to be key factors in MeJA- and ABA-induced stomatal closure.2,79It has been reported that ROS was not induced by MeJA and ABA in the MeJA- and ABA-insensitive mutant, rcn1 in which the regulatory subunit A of protein phosphatase 2A, RCN1, is impaired.7,10 We examined NO production induced by MeJA and ABA in rcn1 guard cells (Fig. 1). NO production by MeJA and ABA was impaired in rcn1 mutant (p = 0.87 and 0.25 for MeJA and ABA, respectively) in contrast to wild type. On the other hand, the NO donor, SNP induced stomatal closure both in wild type and rcn1 mutant (data not shown). These results are consistent with our previous results, i.e., NO is involved in both MeJA- and ABA-induced stomatal closure and functions downstream of the branching point of MeJA and ABA signaling in Arabidopsis guard cells.7 Our finding implies that protein phosphatase 2A might positively regulate NO levels in guard cells (Fig. 2).Open in a separate windowFigure 1Impairment of MeJA- and ABA-induced NO production in rcn1 guard cells. (A) Effects of MeJA (n = 10) and ABA (n = 9) on NO production in wild-type guard cells. (B) Effects of MeJA (n = 7) and ABA (n = 7) on NO production in rcn1 guard cells. The vertical scale represents the percentage of diaminofluorescein-2 diacetate (DAF-2 DA) fluorescent levels when fluorescent intensities of MeJA- or ABA-treated cells are normalized to control value taken as 100% for each experiment. Each datum was obtained from at least 30 guard cells. Error bars represent standard errors. Significance of differences between data sets was assessed by Student''s t-test analysis in this paper. We regarded differences at the level of p < 0.05 as significant.Open in a separate windowFigure 2A model of signal interaction in MeJA-induced and ABA-induced stomatal closure. Neither MeJA nor ABA induces ROS production, NO production, IKin and stomatal closure in rcn1 mutant. These results suggest that NO functions downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.  相似文献   

16.
Syringomycin, a bacterial phytotoxin, closes stomata   总被引:3,自引:1,他引:2       下载免费PDF全文
Mott KA  Takemoto JY 《Plant physiology》1989,90(4):1435-1439
The effects of the bacterial phytotoxin, syringomycin, on stomata were investigated using detached leaves of Xanthium strumarium and isolated epidermes of Vicia faba. Syringomycin is known to cause K+ efflux in fungal and higher plant cells. Doses of syringomycin as low as 0.3 unit per square centimeter (about 0.88 pmole per square centimeter) resulted in measurable stomatal closure when applied through the transpiration stream of detached leaves; higher doses produced larger reductions in stomatal conductance. Stomatal apertures of isolated epidermes were also reduced by low concentrations (3.2 units per milliliter; 10−8 molar) of syringomycin. The effects of syringomycin were similar to those of ABA. Both compounds closed stomata at a similar rate and at similar concentrations. In addition, neither compound significantly affected the relationship between photosynthesis and intercellular CO2 based on data taken after stomatal conductance had stabilized following the treatment. It is possible that syringomycin and ABA activate the same K+ export system in guard cells, and syringomycin may be a valuable tool for studying the molecular basis of ABA effects on guard cells.  相似文献   

17.
We determined the role of Phospholipase Dα1 (PLDα1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The pldα1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells but not in pldα1 cells, whereas PA stimulated NADPH oxidase activity in both genotypes. PA bound to recombinant Arabidopsis NADPH oxidase RbohD (respiratory burst oxidase homolog D) and RbohF. The PA binding motifs were identified, and mutation of the Arg residues 149, 150, 156, and 157 in RbohD resulted in the loss of PA binding and the loss of PA activation of RbohD. The rbohD mutant expressing non-PA-binding RbohD was compromised in ABA-mediated ROS production and stomatal closure. Furthermore, ABA-induced production of nitric oxide (NO) was impaired in pldα1 guard cells. Disruption of PA binding to ABI1 protein phosphatase 2C did not affect ABA-induced production of ROS or NO, but the PA–ABI1 interaction was required for stomatal closure induced by ABA, H2O2, or NO. Thus, PA is as a central lipid signaling molecule that links different components in the ABA signaling network in guard cells.  相似文献   

18.
Plant recognition of pathogen‐associated molecular patterns (PAMPs) such as bacterial flagellin‐derived flg22 triggers rapid activation of mitogen‐activated protein kinases (MAPKs) and generation of reactive oxygen species (ROS). Arabidopsis has at least four PAMP/pathogen‐responsive MAPKs: MPK3, MPK6, MPK4 and MPK11. It was speculated that these MAPKs may function downstream of ROS in plant immunity because of their activation by exogenously added H2O2. MPK3/MPK6 or their orthologs in other plant species have also been reported to be involved in the ROS burst from the plant respiratory burst oxidase homolog (Rboh) of the human neutrophil gp91phox. However, detailed genetic analysis is lacking. Using a chemical genetic approach, we generated a conditional loss‐of‐function mpk3 mpk6 double mutant. Consistent with results obtained using a conditionally rescued mpk3 mpk6 double mutant generated previously, the results obtained using the new conditional loss‐of‐function mpk3 mpk6 double mutant demonstrate that the flg22‐triggered ROS burst is independent of MPK3/MPK6. In Arabidopsis mutants lacking a functional AtRbohD, the flg22‐induced ROS burst was completely blocked. However, activation of MPK3/MPK6 was not affected. Based on these results, we conclude that the rapid ROS burst and MPK3/MPK6 activation are two independent early signaling events in plant immunity, downstream of FLS2. We also found that MPK4 negatively affects the flg22‐induced ROS burst. In addition, salicylic acid pre‐treatment enhances the AtRbohD‐mediated ROS burst, which is again independent of MPK3/MPK6 based on analysis of the mpk3 mpk6 double mutant. The establishment of an mpk3 mpk6 double mutant system using a chemical genetic approach provides a powerful tool to investigate the function of MPK3/MPK6 in the plant defense signaling pathway.  相似文献   

19.
Guard cells, which form stomata on the leaf epidermis, play important roles in plant gas exchange and defense against pathogens. Abscisic acid (ABA) is a phytohormone that can be induced by drought and leads to stomatal closure. Guard cells have been a premier model system for studying ABA signal transduction. Despite significant progress on the identification of molecular components in the ABA signaling pathway, our knowledge of the protein components is very limited. Here, we employ a recently developed multiplexed isobaric tagging technology to identify ABA-responsive proteins in Brassica napus guard cells. A total of 431 unique proteins were identified with relative quantitative information in control and ABA-treated samples. Proteins involved in stress and defense constituted a major group among the 66 proteins with increased abundance. Thirty-eight proteins were decreased in abundance and fell into several functional groups including metabolism and protein synthesis. Many of the proteins have not been reported as being ABA responsive or involved in stomatal movement. A large percentage of the protein-coding genes contained ABA-responsive elements. This study not only established a comprehensive inventory of ABA-responsive proteins, but also identified new proteins for further investigation of their functions in guard cell ABA signaling.  相似文献   

20.
Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), are among the important second messengers in abscisic acid (ABA) signaling in guard cells. In this study, to investigate specific roles of H2O2 in ABA signaling in guard cells, we examined the effects of mutations in the guard cell-expressed catalase (CAT) genes, CAT1 and CAT3, and of the CAT inhibitor 3-aminotriazole (AT) on stomatal movement. The cat3 and cat1 cat3 mutations significantly reduced CAT activities, leading to higher basal level of H2O2 in guard cells, when assessed by 2′,7′-dichlorodihydrofluorescein, whereas they did not affect stomatal aperture size under non-stressed condition. In addition, AT-treatment at concentrations that abolish CAT activities, showed trivial affect on stomatal aperture size, while basal H2O2 level increased extensively. In contrast, cat mutations and AT-treatment potentiated ABA-induced stomatal closure. Inducible ROS production triggered by ABA was observed in these mutants and wild type as well as in AT-treated guard cells. These results suggest that ABA-inducible cytosolic H2O2 elevation functions in ABA-induced stomatal closure, while constitutive increase of H2O2 do not cause stomatal closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号