首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A two-dimensional gel electrophoretic system for the separation of cellular proteins is described. The system utilizes sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis in the first dimension and polyacrylamide gel isoelectric focusing in the second dimension. The system offers a good starting point for many difficult protein separations requiring SDS.  相似文献   

2.
A method has been devised for performing Western blot assays on proteins resolved by isoelectric focusing. Electrophoretic transfer of proteins directly from isoelectric focusing (IEF) tube gels to nitrocellulose sheets allowed their immunoassay without conventional second dimension SDS gel electrophoresis. The same method can also be used for IEF slab gels. For the immunostaining of nonmuscle actin isoforms in extracts of cultured cells, the resolution of this technique was much improved over that of Western blots of two-dimensional gels.  相似文献   

3.
Separation of externally exposed plasma membrane proteins of mammalian cells has been achieved by a new two-dimensional gel electrophoresis system. The proteins were separated in the first dimension on cylindrical polyacrylamide gels containing 0.1% sodium dodecyl sulfate (SDS) and in the second dimension on polyacrylamide slab gels containing 9 M urea, 0.1% SDS, and 0.1% Triton CF10. Using this method we have obtained reproducible high-resolution patterns of cell surface proteins of differentiated rat neuro-tumor cells in culture and of normal rat retinal cells. Different cell types show characteristic cell surface proteins in addition to ubiquitous ones. The number of common surface proteins between two cell types account for approximately half of the total surface proteins. By immunoprecipitation we have also found that rabbit anti-serum against a rat neuronal cell line can recognize most of these external proteins. Since the separation in the first dimension is done in the presence of SDS and the second dimension in the presence of SDS, a non-ionic detergent, and urea, the technique is particularly suitable for proteins that are of poor solubility. In addition to size, net charge and hydrophobicity appear to be important factors in the separation. Virtually all of the proteins that run in the first dimension can be recovered and further separated in the second.  相似文献   

4.
The development of a dedicated two-dimensional gel electrophoresis system is described that provides superior performance in terms of high resolving power and enhanced gel-to-gel reproducibility. Isoelectric focusing is performed in a 1-mm capillary tube with a 0.08-mm thread, optimized for this application, incorporated along its length prior to polymerization of the gel matrix. The isoelectric focusing gel is 4% T, 2.6% C to minimize sieving of proteins and promote adhesion of the gel to the thread. The thread incorporated in the isoelectric focusing matrix prevents gel stretching and breakage during its application to the second dimension. An optimum ampholyte pH range has been defined based on 1600 polypeptides present in a transformed fibroblast cell lysate and verified using a variety of other cell types. The length of time required to complete an electrophoretic separation in the second dimension was found to depend on buffer conductivity establishing the importance of high quality electrophoresis grade reagents devoid of contaminating salts. To ensure reproducibility of electrophoretic separations, it is critical to maintain a strict control of temperature during the second dimension separation. This prevents altered migration of some polypeptides relative to neighboring polypeptides that have constant Rfs over a broad temperature range. It was also determined that to obtain the maximum information from a complex protein mixture it is critical to use a large format 22- x 22-cm two-dimensional electrophoretic system. Using the optimized two-dimensional electrophoretic system and computerized gel analysis, it was determined that molecular weight estimates of polypeptides differed by approximately 350 daltons between gels, while isoelectric point estimates differed by approximately 0.03 pH units between gels. Using the two-dimensional electrophoresis system described, approximately 1000 polypeptides can be routinely detected from silver-stained 10% polyacrylamide gels or 1600 polypeptides from autoradiographs of 35S-methionine-labeled polypeptides.  相似文献   

5.
We performed a three-dimensional separation of pulse-chase dual-labelled rat liver cytosolic proteins using hydrophobic interaction chromatography, isoelectric focusing, and SDS gel electrophoresis. Due to very different expression rates but similar size and pI of rat liver cytosolic proteins, we demonstrate the impossibility of successful two-dimensional separations of such complex protein mixtures. A pre-fractionation of proteins by hydrophobic interaction chromatography is therefore recommended prior to two-dimensional gel electrophoresis. Our studies confirmed the correlation between protein turnover rates and surface hydrophobicity.  相似文献   

6.
A novel two-dimensional (2D) separation system for proteins was reported. In the system, a piece of dialysis hollow-fiber membrane was employed as the interface for on-line combination of capillary isoelectric focusing (CIEF) and capillary non-gel sieving electrophoresis (CNGSE). The system is similar equivalent to two-dimensional polyacrylamide gel electrophoresis (2D PAGE), by transferring the principal of 2D PAGE separation to the capillary format. Proteins were focused and separated in first dimension CIEF based on their differences in isoelectric points (pIs). Focused protein zones was transferred to the dialysis hollow-fiber interface, where proteins hydrophobically complexed with sodium dodecyl sulfate (SDS). The negatively charged proteins were electromigrated and further resolved by their differences in size in the second dimension CNGSE, in which dextran solution, a replaceable sieving matrix instead of cross-linked polyacrylamide gel was employed for size-dependent separation of proteins. The combination of the two techniques was attributed to high efficiency of the dialysis membrane interface. The feasibility and the orthogonality of the combined CIEF-CNGSE separation technique, an important factor for maximizing peak capacity or resolution elements, were demonstrated by examining each technique independently for the separation of hemoglobin and protein mixtures excreting from lung cancer cells of rat. The 2D separation strategy was found to greatly increase the resolving power and overall peak capacity over those obtained for either dimension alone.  相似文献   

7.
A two-dimensional immobilized metal affinity electrophoresis method is described here. In this method, ferric ions are immobilized in the second-dimensional polyacrylamide gel to extract the phosphoprotein β-casein from a mixture containing proteins with a broad range of pI and MW. Native 7.5–15% gradient tris-glycine gel with SDS tris-glycine gel running buffer are used so that proteins can be separated according to their molecular mass in the second dimension.  相似文献   

8.
Ultra acidic proteins, generated by posttranslational modifications, are becoming increasingly important due to recent evidence showing their function as regulatory elements or as intermediates in degradation pathways in bacteria. Such proteins are important in neurodegenerative diseases and embryonic development, and they include the Alzheimer-related tau (τ) protein (resulting from posttranslational modifications) and the phosphor-storage embryonic proteins. The ultra acidic proteins are difficult to study because standard two-dimensional gel electrophoresis is inadequate for their analysis. Here we describe a novel electrophoresis system of anodic acidic gels that can replace isoelectric focusing as the first dimension of separation in two-dimensional electrophoresis. The system is based on a sodium acetate buffer (pH 4.6), is compatible with traditional stains (e.g., Coomassie blue) as well as novel fluorescent dyes (e.g., Pro-Q Diamond), and is quantitative for the analysis of ultra acidic proteins. The anodic acidic gels were used for the functional classification of the ultra acidic part of the Bacillus subtilis proteome, showing significant improvement over traditional two-dimensional electrophoresis.  相似文献   

9.
Sea urchin histones can be separated from ribosomal proteins by two-dimensional gel electrophoresis. Electrophoresis on Triton X-100/6 m urea gels in the first dimension results in preferential retardation of the histones, which then migrate more rapidly than ribosomal contaminants on SDS gel electrophoresis in the second dimension. The advantages and generality of the system are discussed.  相似文献   

10.
Two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension, initially applied for the separation of soluble and total cellular proteins, has been extended to the analysis of membrane proteins. We show that the usual procedures lead to artifacts and irreproducible results due to aggregation and precipitation of proteins and protein-phospholipid complexes during isoelectric focusing (first dimension) and sodium dodecyl sulfate (SDS) gel electrophoresis (second dimension). Optimized solubilization procedures for hydrophobic membrane proteins are presented and the use of dilute samples is shown to be essential to overcome the major problems in isoelectric focusing. Increased volumes of samples dissolved in rehydration buffer are applied by direct rehydration of dry immobilized pH gradient (IPG) gels. Isoelectric focusing in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) without urea gives good results as does 2% Nonidet-P40 with 8 M urea. Heat denaturation should be avoided. An optimized equilibration procedure for IPG gel strips in SDS sample buffer prior to separation in the second dimension was developed that minimizes loss of proteins and results in high-resolution two-dimensional electropherographic maps with a minimum of streaking. The gel strips are partially dehydrated at 40 degrees C and shortly reswollen in situ on the SDS slab gel in SDS-sample buffer containing agarose.  相似文献   

11.
Sample preparation methods were compared for two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of cellular proteins from the proteolytic bacterium Porphyromonas gingivalis. Standard solubilization buffer yielded poorly resolved protein spots, but pre-treatment of cells with trichloroacetic acid or inclusion of the protease inhibitor TLCK during solubilization improved definition and separation. The latter approach allowed reliable detection of a 55 kDa immunodominant surface antigen by Western immunoblotting. Further improvements in resolution occurred when SDS was included in the sample preparation. Thus, controlling proteolysis and optimizing protein solubilization were essential for reproducible separations and maximal protein recovery during 2D-PAGE of P. gingivalis.  相似文献   

12.
As a complementary approach to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), multi-dimensional chromatography separation methods have been widely applied in all kinds of biological sample investigations. Multi-dimensional liquid chromatography (MDLC) coupled with bio-mass spectrometry (MS) is playing important roles in proteome research due to its high speed, high resolution and high sensitivity. Proteome analysis strategies mainly include bottom-up and top-down approaches which carry out biological sample separation based on peptide and protein levels, respectively. Electrophoretic methods combined with liquid chromatography like IEF-HPLC and HPLC-SDS-PAGE have been successful applied for protein separations. As for MDLC strategy, ion-exchange chromatography (IEX) together with reversed phase liquid chromatography (RPLC) is still a most widely used chromatography in proteome analysis, other chromatographic methods are also frequently used in protein pre-fractionations, while affinity chromatography is usually adopted for specific functional protein analysis. Recent MDLC technologies and applications to variety of proteome analysis have been achieved great development. A digest peptide-based approach as so-called "bottom-up" and intact protein-based approach "top-down" analysis of proteome samples were briefly reviewed in this paper. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as high-abundance protein depletion and chromatography array were also included in this review.  相似文献   

13.
Size-exclusion chromatography (SEC) is a separation technique with a relatively low resolving power, compared to those usually utilized in proteomics. Therefore, it is often overlooked in experimental protocols, when the main goal is resolving complex biological mixtures. In this report, we introduce innovative multidimensional schemes for proteomics analysis, in which SEC plays a practical role. Liquid isoelectric focusing (IEF) was combined with SEC, and experimental results were compared to those obtained by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), well-established techniques relying upon similar criteria for separation.Additional experiments were performed to evaluate the practical contribution of SEC in multidimensional chromatographic separations. Specifically, we evaluated the combination of SEC and ion exchange chromatography in an analytical scheme for the mass spectrometric analysis of protein-extracts obtained from bacterial cultures grown in stable isotope enriched media. Experimental conditions and practical considerations are discussed.  相似文献   

14.
Intensive research and development of electrophoresis methodology and instrumentation during past decades has resulted in unique methods widely implemented in bioanalysis. While two‐dimensional electrophoresis and denaturing polyacrylamide gel electrophoresis in sodium dodecylsulfate are still the most frequently used electrophoretic methods applied to analyses of proteins, new miniaturized capillary and microfluidic versions of electromigrational methods have been developed. High‐throughput electrophoretic instruments with hundreds of capillaries for parallel separations and laser‐induced fluorescence detection of labeled DNA strands have been of key importance for the scientific and commercial success of the Human Genome Project. Another powerful method, capillary isoelectric focusing with pressurized and pH‐driven mobilization, provides efficient separations and on‐line sensitive detection of proteins, bacteria and viruses. Electrophoretic microfluidic devices can integrate single‐cell injection, cell lysis, separation of its components and fluorescence or mass spectrometry detection. These miniaturized devices also proved the capability of single‐molecule detection.  相似文献   

15.
Zahedi RP  Meisinger C  Sickmann A 《Proteomics》2005,5(14):3581-3588
Despite the importance of membranes in any living system, the global analysis of membrane subproteomes is still a common obstacle. In particular, the widely used 2-DE technique consisting of IEF in the first dimension and SDS-PAGE in the second dimension has some major drawbacks regarding the separation of hydrophobic proteins. Therefore, we applied an alternative electrophoretic technique for separating membrane proteins: two-dimensional BAC/SDS electrophoresis (2-DB) using the cationic detergent benzyldimethyl-n-hexadecylammonium chloride in the first and the anionic detergent SDS in the second dimension. The use of 2-DB resulted in an improved separation of hydrophobic proteins. Thus, extremely hydrophobic proteins such as cytochrome-c oxidase subunit I with a grand average hydrophobicity (GRAVY) index of 0.74 and a total of 12 known transmembrane domains (TMD) or Sec61alpha with a GRAVY index of 0.56 and a total of ten known TMD could be identified by MS/MS analyses of protein spots derived from 2-DB gels.  相似文献   

16.
The newly designed equipment for alternating field gel electrophoresis which permits the separation of very large DNA molecules and the simultaneous analysis of up to 35 samples is described. The field alternation is effected by intermittently rotating the submerged agarose gel by optitional angles. The time intervals between changes of position are controlled by a computer program driving a simple switching device which was designed to suit any technique using periodic switching or inversion of the electrical field. Because the electrophoresis unit provides an absolutely homogeneous electrical field, no distortion of migration lanes occurs and the resolution is very good. Moreover, by using a switching time interval gradient an almost perfect linear relationship between migration distances and molecule sizes in the range of about 100-1250 kilobase pairs is observed. In two-dimensional separations, different switching time programs for the first and second dimension allow maximum resolution of selected size ranges. Field inversion gel electrophoresis is possible as well. The performance of the method is demonstrated by comparing the chromosome sizes of different yeast strains.  相似文献   

17.
High resolution two-dimensional electrophoresis of proteins.   总被引:2166,自引:0,他引:2166  
  相似文献   

18.
The present study analyses, by two-dimensional polyacrylamide gel electrophoresis, the protease SP220K isolated from renal cell carcinoma. The pure molecule is separated using either immobilized pH gradient or isoelectric focusing in conventional carrier ampholyte in the first dimension. Some interactions with the acrylamide matrix in isoelectric focusing are discussed. The results demonstrate that two-dimensional gel electrophoresis performed with enriched media such as basolateral membranes, allows the detection of the protease. In addition, the non detection of the molecule up to now by this methodology can be explained by the high tendency of oligomerization of SP220K. Effectively the high molecular weight form of the molecule of 220 kDa is favoured in two-dimensional gel electrophoresis over monomeric forms which are better detected in SDS PAGE. This was confirmed by immunostaining performed with an antiserum to SP220K produced by nitrocellulose-bound antigen.  相似文献   

19.
Two-dimensional polyacrylamide gel electrophoresis of membrane proteins   总被引:2,自引:0,他引:2  
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is one of the most powerful separation techniques for complex protein solutions. The proteins are first separated according to their isoelectric point, driven by an electric field across a pH gradient. The pH gradient necessary for the separation according to isoelectric point (pL) is usually established by electrophoresing carrier ampholytes prior to and/or concomitantly with the sample. The second dimension is usually a separation according to molecular size. Mostly this separation is performed after complete denaturation of the proteins by sodium dodecyl sulfate and 2-mercaptoethanol (SDS-PAGE). This standard method has considerable disadvantages when relatively hydrophobic membrane proteins are to be separated: cathodic drift, resulting in nonreproducible separation, and the denaturation of the protein, mostly making it impossible to detect native properties of the proteins after separation (e.g., enzymatic activity, antigenicity, intact multimers, and so on). The protocols presented here take care of most of these obstacles. However, there is probably no universal procedure that can guarantee success at first try for any mixture of membrane proteins; some experimentation will be necessary for optimization. Two procedures are each presented: a denaturing (with urea) and a nondenaturing method for IEF in immobilized pH gradient gels using Immobilines, and a denaturing (with SDS and 2-mercaptoethanol) and a nondenaturing technique (with CHAPS) for the second dimension. Essential tips and tricks are presented to keep frustrations of the newcomer at a low level.  相似文献   

20.
Multi-dimensional liquid chromatography is often presented as an alternative to two-dimensional (2-D) gel electrophoresis for separating complex protein mixtures. The vast majority of analytical-scale 2-D LC systems have employed either off-line fractionation or stepped gradients in the first dimension separation. The latter severely restrict flexibility in setting up the first dimension gradient. We propose a novel two-dimensional LC system that employs online fractionation of proteins into a series of small reversed phase trapping columns. These traps effectively decouple the two separation dimensions and avoid problems associated with off-line fraction collection. Flexibility in determining the gradient programs for the two separations is thus enhanced. The reduced diameter of the trapping columns concentrates analyte between chromatographic dimensions. The apparatus is coupled with online electrospray time-of-flight mass spectrometry to characterize ribosomal proteins of Caulobacter crescentus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号