首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A peptide-gated ion channel from the freshwater polyp Hydra   总被引:1,自引:0,他引:1  
Chemical transmitters are either low molecular weight molecules or neuropeptides. As a general rule, neuropeptides activate only slow metabotropic receptors. To date, only one exception to this rule is known, the FMRFamide-activated Na(+) channel (FaNaC) from snails. Until now FaNaC has been regarded as a curiosity, and it was not known whether peptide-gated ionotropic receptors are also present in other animal groups. Nervous systems first evolved in cnidarians, which extensively use neuropeptides. Here we report cloning from the freshwater cnidarian Hydra of a novel ion channel (Hydra sodium channel, HyNaC) that is directly gated by the neuropeptides Hydra-RFamides I and II and is related to FaNaC. The cells expressing HyNaC localize to the base of the tentacles, adjacent to the neurons producing the Hydra-RFamides, suggesting that the peptides are the natural ligands for this channel. Our results suggest that neuropeptides were already used for fast transmission in ancient nervous systems.  相似文献   

2.
Protons at the gate: DEG/ENaC ion channels help us feel and remember   总被引:13,自引:0,他引:13  
Bianchi L  Driscoll M 《Neuron》2002,34(3):337-340
The DEG/ENaC ion channel family contributes to channels of striking functional diversity. Neuronally expressed family members include the C. elegans degenerins that mediate touch and are thought to be mechanically gated, and the mammalian ASICs, which are gated by protons. ASICs affect a range of sensory functions that includes perception of gentle touch, harsh touch, heat, sour taste, and pain. Family member ASIC1 is now implicated in long-term potentiation, suggesting that minute fluxes in synaptic pH may activate ASICs to enhance learning.  相似文献   

3.
There are four genes for acid-sensing ion channels (ASICs) in the genome of mammalian species. Whereas ASIC1 to ASIC3 form functional H+-gated Na+ channels, ASIC4 is not gated by H+, and its function is unknown. Zebrafish has two ASIC4 paralogs: zASIC4.1 and zASIC4.2. Whereas zASIC4.1 is gated by extracellular H+, zASIC4.2 is not. This differential response to H+ makes zASIC4 paralogs a good model to study the properties of this ion channel. In this study, we found that surface expression of homomeric zASIC4.2 is higher than that of zASIC4.1. Surface expression of zASIC4.1 was much increased by formation of heteromeric channels, suggesting that zASIC4.1 contributes to heteromeric ASICs in zebrafish neurons. Robust surface expression of H+-insensitive zASIC4.2 suggests that zASIC4.2 functions as a homomer and is gated by an as yet unknown stimulus, different from H+. Moreover, we identified a small region just distal to the first transmembrane domain that is crucial for the differential H+ response of the two paralogs. This post-TM1 domain may have a general role in gating of members of this gene family.  相似文献   

4.
Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn2+, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel’s large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated. [BMB Reports 2013; 46(6): 295-304]  相似文献   

5.
The adenosine triphosphate (ATP)‐gated P2X receptor cation channel family consists of permeable ligand‐gated ion channels that expand on the binding of extracellular adenosine 5’‐ATP. ATP‐gated P2X receptors are trimer ion channels that assemble homo or isomer from seven cloned subunits. P2X receptors are discovered mostly in mammalian and are being found in an increasing number of non‐vertebrates, such as zebrafish, bullfrog, and ameba. P2X receptors are involved in many physiological processes, including regulation of heart rhythm and contractility, and regulation of pain, especially chronic pain and glia integration. This review summarizes the current studies on the regulation of P2X receptors in abnormal neuronal‐glial interaction and the pathological changes in viscera, especially in myocardial ischemia.  相似文献   

6.
组织酸化参与外周痛觉传递的离子通道机制   总被引:2,自引:0,他引:2  
组织酸化可以导致痛觉的产生.初级感觉神经元可以通过离子通道来感受外周的组织酸化.已鉴定了几个离子通道家族可能参与了外周组织酸化的感受:a.酸敏感离子通道(ASICs)是可以被酸直接门控的阳离子通道;b.辣椒素受体(VR1)可被酸敏化,同时可被pH<6.0直接激活;c.P2X2和P2X2/3受体通道反应被酸上调;d.TwIK相关的酸感受钾通道(TASK)是被酸关闭的双孔内向整流钾通道.这些通道被酸所调控的共同结果就是提高了神经元的兴奋性.因此,它们在介导了组织酸化所诱导的痛觉感受和传递中具有重要作用.  相似文献   

7.
Proton-gated channels of the ASIC family are widely distributed in the mammalian brain, and, according to the recent data, participate in synaptic transmission. However, ASIC-mediated currents are small, and special efforts are required to detect them. This prompts the search for endogenous ASIC ligands, which can activate or potentiate these channels. A recent finding of the potentiating action of histamine on recombinant homomeric ASIC1a has directed attention to amine-containing compounds. In the present study, we have analyzed the action of histamine, tyramine, and tryptamine on native and recombinant ASICs. None of the compounds caused potentiation of native ASICs in hippocampal interneurons. Furthermore, when applied simultaneously with channel activation, they produced voltage-dependent inhibition. Experiments on recombinant ASIC1a and ASIC2a allowed for an interpretation of these findings. Histamine and tyramine were found to be inactive on the ASIC2a, while tryptamine demonstrated weak inhibition. However, they induce both voltage-dependent inhibition of open channels and voltage-independent potentiation of closed/desensitized channels on the ASIC1a. We suggest that the presence of an ASIC2a subunit in heteromeric native ASICs prevents potentiation but not inhibition. As a result, the inhibitory action of histamine, which is masked by a strong potentiating effect on the ASIC1a homomers, becomes pronounced in experiments with native ASICs.  相似文献   

8.
FMRFamide-gated Na+ channels of molluscan neurones belong to the ENa/Deg family of channels which have diverse functions. FMRFamide (Phe-Met-Arg-Phe-NH2) Na+ channels were detected electrophysiologically in specified neurones of Helix (Helix aspersa) and Helisoma (Helisoma trivolvis), and clones (FaNaCs) subsequently identified. We have now made a study to determine the distribution of mRNA for the clones HaFaNaC (Helix) and HtFaNaC (Helisoma) in the nervous systems of these species using standard in situ hybridization techniques. Immunohistochemical experiments were also made using an HtFaNaC antibody to detect the channel protein in Helisoma neurones. Many neurones in the central ganglia, including those which exhibit the FMRFamide Na+ current, stained for FaNaC-mRNA, suggesting a much wider distribution of the channel than was indicated by the earlier work. An immunoreactive response to the channel antibody was also observed in some Helisoma neurones, such as the giant dopamine neurone of the left pedal ganglion, also shown to possess HtFaNaC-mRNA and to exhibit the FMRFamide Na+ current. Taken together, these experiments suggest that the clones HaFaNaC and HtFaNaC are major, if not the only, subunits of the FMRFamide-gated Na+ channel detected electrophysiologically in the identified neurones of these species. However, fewer neurones in Helisoma reacted with the HtFaNaC-antibody than those which exhibited message for the channel. This discrepancy may be due to a difference in sensitivity of the two techniques, or because not all of the channel mRNA is normally expressed as a membrane protein.  相似文献   

9.
A novel peptide, conorfamide-Sr2 (CNF-Sr2), was purified from the venom extract of Conus spurius, collected in the Caribbean Sea off the Yucatan Peninsula. Its primary structure was determined by automated Edman degradation and amino acid analysis, and confirmed by electrospray ionization mass spectrometry. Conorfamide-Sr2 contains 12 amino acids and no Cys residues, and it is only the second FMRFamide-related peptide isolated from a venom. Its primary structure GPM gammaDPLgammaIIRI-nh2, (gamma, gamma-carboxyglutamate; -nh2, amidated C-terminus; calculated monoisotopic mass, 1468.72Da; experimental monoisotopic mass, 1468.70Da) shows two features that are unusual among FMRFamide-related peptides (FaRPs, also known as RFamide peptides), namely the novel presence of gamma-carboxyglutamate, and a rather uncommon C-terminal residue, Ile. CNF-Sr2 exhibits paralytic activity in the limpet Patella opea and causes hyperactivity in the freshwater snail Pomacea paludosa and in the mouse. The sequence similarities of CNF-Sr2 with FaRPs from marine and freshwater mollusks and mice might explain its biological effects in these organisms. It also resembles FaRPs from polychaetes (the prey of C. spurius), which suggests a natural biological role. Based on these similarities, CNF-Sr2 might interact with receptors of these three distinct types of FaRPs, G-protein-coupled receptors, Na+ channels activated by FMRFamide (FaNaCs), and acid-sensing ion channels (ASICs). The biological activities of CNF-Sr2 in mollusks and mice make it a potential tool to study molecular targets in these and other organisms.  相似文献   

10.
The acid-sensing ion channel (ASIC) subunits ASIC1, ASIC2, and ASIC3 are members of the amiloride-sensitive Na+ channel/degenerin family of ion channels. They form proton-gated channels that are expressed in the central nervous system and in sensory neurons, where they are thought to play an important role in pain accompanying tissue acidosis. A splice variant of ASIC2, ASIC2b, is not active on its own but modifies the properties of ASIC3. In particular, whereas most members of the amiloride-sensitive Na+ channel/degenerin family are highly selective for Na+ over K+, ASIC3/ASIC2b heteromultimers show a nonselective component. Chimeras of the two splice variants allowed identification of a 9-amino acid region preceding the first transmembrane (TM) domain (pre-TM1) of ASIC2 that is involved in ion permeation and is critical for Na+ selectivity. Three amino acids in this region (Ile-19, Phe-20, and Thr-25) appear to be particularly important, because channels mutated at these residues discriminate poorly between Na+ and K+. In addition, the pH dependences of the activity of the F20S and T25K mutants are changed as compared with that of wild-type ASIC2. A corresponding ASIC3 mutant (T26K) also has modified Na+ selectivity. Our results suggest that the pre-TM1 region of ASICs participates in the ion pore.  相似文献   

11.
Muscarinic potassium channels (KACh) are composed of two subunits, GIRK1 and GIRK4 (or CIR), and are directly gated by G proteins. We have identified a novel gating mechanism of KACh, independent of G-protein activation. This mechanism involved functional modification of KACh which required hydrolysis of physiological levels of intracellular ATP and was manifested by an increase in the channel mean open time. The ATP-modified channels could in turn be gated by intracellular Na+, starting at approximately 3 mM with an EC50 of approximately 40 mM. The Na(+)-gating of KACh was operative both in native atrial cells and in a heterologous system expressing recombinant channel subunits. Block of the Na+/K+ pump (e.g., by cardiac glycosides) caused significant activation of KACh in atrial cells, with a time course similar to that of Na+ accumulation and in a manner indistinguishable from that of Na(+)-mediated activation of the channel, suggesting that cardiac glycosides activated KACh by increasing intracellular Na+ levels. These results demonstrate for the first time a direct effect of cardiac glycosides on atrial myocytes involving ion channels which are critical in the regulation of cardiac rhythm.  相似文献   

12.
Mammalian neuronal DEG/ENaC channels known as ASICs (acid-sensing ion channels) mediate sensory perception and memory formation. ASICS are closed at rest and are gated by protons. Members of the DEG/ENaC family expressed in epithelial tissues are called ENaCs and mediate Na(+) transport across epithelia. ENaCs exhibit constitutive activity and strict Na(+) selectivity. We report here the analysis of the first DEG/ENaC in Caenorhabditis elegans with functional features of ENaCs that is involved in sensory perception. ACD-1 (acid-sensitive channel, degenerin-like) is constitutively open and impermeable to Ca(2+), yet it is required with neuronal DEG/ENaC channel DEG-1 for acid avoidance and chemotaxis to the amino acid lysine. Surprisingly, we document that ACD-1 is required in glia rather than neurons to orchestrate sensory perception. We also report that ACD-1 is inhibited by extracellular and intracellular acidification and, based on the analysis of an acid-hypersensitive ACD-1 mutant, we propose a mechanism of action of ACD-1 in sensory responses based on its sensitivity to protons. Our findings suggest that channels with ACD-1 features may be expressed in mammalian glia and have important functions in controlling neuronal function.  相似文献   

13.
Acid-sensing ion channels ASIC1a and ASIC1b are ligand-gated ion channels that are activated by H+ in the physiological range of pH. The apparent affinity for H+ of ASIC1a and 1b is modulated by extracellular Ca2+ through a competition between Ca2+ and H+. Here we show that, in addition to modulating the apparent H+ affinity, Ca2+ blocks ASIC1a in the open state (IC50 approximately 3.9 mM at pH 5.5), whereas ASIC1b is blocked with reduced affinity (IC50 > 10 mM at pH 4.7). Moreover, we report the identification of the site that mediates this open channel block by Ca2+. ASICs have two transmembrane domains. The second transmembrane domain M2 has been shown to form the ion pore of the related epithelial Na+ channel. Conserved topology and high homology in M2 suggests that M2 forms the ion pore also of ASICs. Combined substitution of an aspartate and a glutamate residue at the beginning of M2 completely abolished block by Ca2+ of ASIC1a, showing that these two amino acids (E425 and D432) are crucial for Ca2+ block. It has previously been suggested that relief of Ca2+ block opens ASIC3 channels. However, substitutions of E425 or D432 individually or in combination did not open channels constitutively and did not abolish gating by H+ and modulation of H+ affinity by Ca2+. These results show that channel block by Ca2+ and H+ gating are not intrinsically linked.  相似文献   

14.
Acid-sensing ion channels (ASICs) are excitatory receptors for extracellular H(+). Proposed functions include synaptic transmission, peripheral perception of pain, and mechanosensation. Despite the physiological importance of these functions, the precise role of ASICs has not yet been established. In order to increase our understanding of the physiological role and basic structure-function relationships of ASICs, we report here the cloning of six new ASICs from the zebrafish (zASICs). zASICs possess the basic functional properties of mammalian ASICs: activation by extracellular H(+), Na(+) selectivity, and block by micromolar concentrations of amiloride. The zasic genes are broadly expressed in the central nervous system, whereas expression in the peripheral nervous system is scarce. This pattern suggests a predominant role for zASICs in neuronal communication. Our results suggest a conserved function for receptors of extracellular H(+) in the central nervous system of vertebrates.  相似文献   

15.
ASICs (acid-sensing ion channels) are proton-gated channels that are important for pain sensation. New work by Yu and coworkers in this issue of Neuron identifies synthetic ligands and related small molecules found in the inflammatory soup that activate ASICs. These new findings highlight the power of small molecule screening to find new compounds that can control channel function. They also demonstrate how the discovery and characterization of such molecules can lead to new insights regarding channel mechanism and natural ligands.  相似文献   

16.
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular protons. They are expressed in central and sensory neurons where they are involved in neuromodulation and in pain perception. Recently, the PDZ domain-containing protein PICK1 (protein interacting with C-kinase) has been shown to interact with ASIC1a and ASIC2a, raising the possibility that protein kinase C (PKC) could regulate ASICs. We now show that the amplitude of the ASIC2a current, which was only modestly increased ( approximately +30%) by the PKC activator 1-oleyl-2-acetyl-sn-glycerol (OAG, 50 microm) in the absence of PICK1, was strongly potentiated ( approximately +300%) in the presence of PICK1. This PICK1-dependent regulatory effect was inhibited in the presence of a PKC inhibitory peptide and required the PDZ domain of PICK1 as well as the PDZ-binding domain of ASIC2a. We have also shown the direct PICK1-dependent phosphorylation of ASIC2a by [(32)P]phosphate labeling and immunoprecipitation and identified a major phosphorylation site, (39)TIR, on the N terminus part of ASIC2a. The OAG-induced increase in ASIC2a current amplitude did not involve any change in the unitary conductance of the ASIC2a channel, whether co-expressed with PICK1 or not. These data provide the first demonstration of a regulation of ASICs by protein kinase phosphorylation and its potentiation by the partner protein PICK1.  相似文献   

17.
酸敏感离子通道(ASICs)属于上皮 Na+ 通道/退化蛋白超家族,对细胞外 H+ 浓度变化敏感,其受多种外源性配体调控,产生 不同生理和病理学效应。越来越多研究发现,ASICs 参与脑缺血、炎症、肿瘤等具有酸化改变的病理过程。简介 ASICs 的结构及其配体 作用位点以及各亚基的组织分布和电生理特性,主要对各类 ASICs 外源性配体的研究进展作一综述。  相似文献   

18.
Stomatin modulates gating of acid-sensing ion channels   总被引:3,自引:0,他引:3  
Acid-sensing ion channels (ASICs) are H(+)-gated members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family in vertebrate neurons. Several ASICs are expressed in sensory neurons, where they play a role in responses to nociceptive, taste, and mechanical stimuli; others are expressed in central neurons, where they participate in synaptic plasticity and some forms of learning. Stomatin is an integral membrane protein found in lipid/protein-rich microdomains, and it is believed to regulate the function of ion channels and transporters. In Caenorhabditis elegans, stomatin homologs interact with DEG/ENaC channels, which together are necessary for normal mechanosensation in the worm. Therefore, we asked whether stomatin interacts with and modulates the function of ASICs. We found that stomatin co-immunoprecipitated and co-localized with ASIC proteins in heterologous cells. Moreover, stomatin altered the function of ASIC channels. Stomatin potently reduced acid-evoked currents generated by ASIC3 without changing steady state protein levels or the amount of ASIC3 expressed at the cell surface. In contrast, stomatin accelerated the desensitization rate of ASIC2 and heteromeric ASICs, whereas current amplitude was unaffected. These data suggest that stomatin binds to and alters the gating of ASICs. Our findings indicate that modulation of DEG/ENaC channels by stomatin-like proteins is evolutionarily conserved and may have important implications for mammalian nociception and mechanosensation.  相似文献   

19.
酸敏感离子通道的功能及其相关调控   总被引:4,自引:1,他引:3  
酸敏感离子通道(ASICs)是一类由胞外酸化所激活的阳离子通道.目前,已发现了6个ASICs亚基,它们在外周和中枢神经系统中广泛表达.利用基因敲除等技术,已证明它们在触觉、痛觉、酸味觉以及学习记忆中具有重要作用.同时,它们也参与某些病理反应.ASICs可以被神经肽、温度、金属离子和缺血相关物质等调控,从而整合细胞周围的多种信号以行使其功能.  相似文献   

20.
Acid sensing ion channels (ASICs), Ca2+ and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号