首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp51. The D153E enzyme had an increased kcat in the presence of high concentrations of Mg2+, along with a decreased Mg2+ affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn1 site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn2+, dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.  相似文献   

2.
Analysis of sequence alignments of alkaline phosphatases revealed a correlation between metal specificity and certain amino acid side chains in the active site that are metal-binding ligands. The Zn(2+)-requiring Escherichia coli alkaline phosphatase has an Asp at position 153 and a Lys at position 328. Co(2+)-requiring alkaline phosphatases from Thermotoga maritima and Bacillus subtilis have a His and a Trp at these positions, respectively. The mutations D153H, K328W, and D153H/K328W were induced in E. coli alkaline phosphatase to determine whether these residues dictate the metal dependence of the enzyme. The wild-type and D153H enzymes showed very little activity in the presence of Co(2+), but the K328W and especially the D153H/K328W enzymes effectively use Co(2+) for catalysis. Isothermal titration calorimetry experiments showed that in all cases except for the D153H/K328W enzyme, a possible conformation change occurs upon binding Co(2+). These data together indicate that the active site of the D153H/K328W enzyme has been altered significantly enough to allow the enzyme to utilize Co(2+) for catalysis. These studies suggest that the active site residues His and Trp at the E. coli enzyme positions 153 and 328, respectively, at least partially dictate the metal specificity of alkaline phosphatase.  相似文献   

3.
Escherichia coli alkaline phosphatase exhibits maximal activity when Zn(2+) fills the M1 and M2 metal sites and Mg(2+) fills the M3 metal site. When other metals replace the zinc and magnesium, the catalytic efficiency is reduced by more than 5000-fold. Alkaline phosphatases from organisms such as Thermotoga maritima and Bacillus subtilis require cobalt for maximal activity and function poorly with zinc and magnesium. Previous studies have shown that the D153H alkaline phosphatase exhibited very little activity in the presence of cobalt, while the K328W and especially the D153H/K328W mutant enzymes can use cobalt for catalysis. To understand the structural basis for the altered metal specificity and the ability of the D153H/K328W enzyme to utilize cobalt for catalysis, we determined the structures of the inactive wild-type E. coli enzyme with cobalt (WT_Co) and the structure of the active D153H/K328W enzyme with cobalt (HW_Co). The structural data reveal differences in the metal coordination and in the strength of the interaction with the product phosphate (P(i)). Since release of P(i) is the slow step in the mechanism at alkaline pH, the enhanced binding of P(i) in the WT_Co structure explains the observed decrease in activity, while the weakened binding of P(i) in the HW_Co structure explains the observed increase in activity. These alterations in P(i) affinity are directly related to alterations in the coordination of the metals in the active site of the enzyme.  相似文献   

4.
The X-ray structure of a mutant version of Escherichia coli alkaline phosphatase (H412N) in which His-412 was replaced by Asn has been determined at both low (-Zn) and high (+Zn) concentrations of zinc. In the wild-type structure, His-412 is a direct ligand to one of the two catalytically critical zinc atoms (Zn1) in the active site. Characterization of the H412N enzyme in solution revealed that the mutant enzyme required high concentrations of zinc for maximal activity and for high substrate and phosphate affinity (Ma L, Kantrowitz ER, 1994, J Biol Chem 269:31614-31619). The H412N enzyme was also inhibited by Tris, in contrast to the wild-type enzyme, which is activated more than twofold by 1 M Tris. To understand these kinetic properties at the molecular level, the structure of the H412N (+Zn) enzyme was refined to an R-factor of 0.174 at 2.2 A resolution, and the structure of the H412N(-Zn) enzyme was refined to an R-factor of 0.166 at a resolution of 2.6 A. Both indicated that the Asn residue substituted for His-412 did not coordinate well to Zn1. In the H412N(-Zn) structure, the Zn1 site had very low occupancy and the phosphate was shifted by 1.8 A from its position in the wild-type structure. The Mg binding site was also affected by the substitution of Asn for His-412. Both structures of the H412N enzyme also revealed a surface-accessible cavity near the Zn1 site that may serve as a binding site for Tris.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR   总被引:1,自引:0,他引:1  
Chloride binding to alkaline phosphatase from Escherichia coli has been monitored by 35Cl NMR for the native zinc enzyme and by 113Cd NMR for two Cd(II)-substituted species, phosphorylated Cd(II)6 alkaline phosphatase and unphosphorylated Cd(II)2 alkaline phosphatase. Of the three metal binding sites per enzyme monomer, A, B, and C, only the NMR signal of 113Cd(II) at the A sites shows sensitivity to the presence of Cl-, suggesting that Cl- coordination occurs at the A site metal ion. From the differences in the chemical shift changes produced in the A site 113Cd resonance for the covalent (E-P) form of the enzyme versus the noncovalent (E . P) form of the enzyme, it is concluded that the A site metal ion can assume a five-coordinate form. The E-P form of the enzyme has three histidyl nitrogens as ligands from the protein to the A site metal ion plus either two water molecules or two Cl- ions as additional monodentate ligands. In the E . P form, there is a phosphate oxygen as a monodentate ligand and either a water molecule or a Cl- ion as the additional monodentate ligand. The shifts of the 113Cd NMR signals of the unphosphorylated Cd(II)2 enzyme induced by Cl- are very similar to those induced in the E-P derivative of the same enzyme, supporting the conclusion that the phosphoseryl residue is not directly coordinated to any of the metal ions. Specific broadening of the 35Cl resonance from bulk Cl- is induced by Zn(II)4 alkaline phosphatase, while Zn(II)2 alkaline phosphatase is even more effective, suggesting an influence by occupancy of the B site on the interaction of monodentate ligands at the A site. A reduction in this quadrupolar broadening is observed upon phosphate binding at pH values where E . P is formed, but not at pH values where E-P is the major species, confirming a specific interaction of Cl- at the A site, the site to which phosphate is bound in E . P, but not in E-P. For the zinc enzyme, a significant decrease in phosphate binding affinity can be shown to occur at pH 8 where one monomer has a higher affinity than the other.  相似文献   

6.
Our structural comparison of the TIM barrel metal-dependent hydrolase(-like) superfamily suggests a classification of their divergent active sites into four types: alphabeta-binuclear, alpha-mononuclear, beta-mononuclear, and metal-independent subsets. The d-aminoacylase from Alcaligenes faecalis DA1 belongs to the beta-mononuclear subset due to the fact that the catalytically essential Zn(2+) is tightly bound at the beta site with coordination by Cys(96), His(220), and His(250), even though it possesses a binuclear active site with a weak alpha binding site. Additional Zn(2+), Cd(2+), and Cu(2+), but not Ni(2+), Co(2+), Mg(2+), Mn(2+), and Ca(2+), can inhibit enzyme activity. Crystal structures of these metal derivatives show that Zn(2+) and Cd(2+) bind at the alpha(1) subsite ligated by His(67), His(69), and Asp(366), while Cu(2+) at the alpha(2) subsite is chelated by His(67), His(69) and Cys(96). Unexpectedly, the crystal structure of the inactive H220A mutant displays that the endogenous Zn(2+) shifts to the alpha(3) subsite coordinated by His(67), His(69), Cys(96), and Asp(366), revealing that elimination of the beta site changes the coordination geometry of the alpha ion with an enhanced affinity. Kinetic studies of the metal ligand mutants such as C96D indicate the uniqueness of the unusual bridging cysteine and its involvement in catalysis. Therefore, the two metal-binding sites in the d-aminoacylase are interactive with partially mutual exclusion, thus resulting in widely different affinities for the activation/attenuation mechanism, in which the enzyme is activated by the metal ion at the beta site, but inhibited by the subsequent binding of the second ion at the alpha site.  相似文献   

7.
Methods have been developed for the addition of different metal ion species to the three distinct pairs of metal sites (A, B, and C) found in the dimer of apoalkaline phosphatase. This allows the preparation of hybrid alkaline phosphatases in which A and B sites of each monomer contain two different species of metal ion or the A and B sites of one monomer contain the same species of metal ion, while the adjacent monomer contains a second species. The following hybrids have been characterized in detail: (Zn(II)ACd(II)B)2 alkaline phosphatase, (Zn(II)AMg(II)B)2 alkaline phosphatase, (Cd(II)AZn(II)B)2 alkaline phosphatase, and (Zn(II)AZn(II]B)(Cd(II)ACd(II)B) alkaline phosphatase. 31P and, where appropriate, 113Cd NMR have been used to monitor the behavior of the covalent (E-P) and noncovalent (E X P) phosphointermediates and of the A and B metal ions. From the pH dependencies of the E-P in equilibrium E X P in equilibrium E + Pi equilibria, it is clear that A site metal is the dominant influence in dephosphorylation of E-P and may have a coordinated water molecule, which ionizes to ZnOH- at a low pH providing the nucleophile for dephosphorylation. A site metal also serves to coordinate phosphate in the E X P complex. B site metal has a much smaller effect on dephosphorylation rates, although it does dramatically alter the Pi dissociation rate, which is the rate-limiting step for the native enzyme at alkaline pH, and is probably important in neutralizing the charge on the phosphoseryl residue, thus potentiating the nucleophilic attack of the OH- bound at A site. Phosphate dissociation is slowed markedly by replacement of B site zinc by cadmium. There is clear evidence for long range effects of subunit-subunit interactions, since metal ion and phosphate binding at one active center alters the environments of A and B site metal ions and phosphoserine at the other active site.  相似文献   

8.
Alkaline phosphatase (EC 3.1.3.1) bound to trophoblastic cells in rat placenta is activated by Mg2+ and inhibited by Zn2+ in the same way as is found with partially purified soluble alkaline phosphatase in the same tissue (PetitClerc, C., Delisle, M., Martel, M., Fecteau, C. & Brière, N. (1975) Can. J. Biochem. 53, 1089-1100). In studies done with tissue sections (6-10 micron), it is shown that alkaline phosphatase activity and labelling of active sites by orthophosphate are lost during incubation with ethanolamine at pH 9.0. Addition of Mg2+ causes total recovery of catalytic activity and active sites labelling. Zn2+ displaces and replaces at the Mg2+ binding sites. The affinity for both ions is similar, and dissociation of Zn2+ from the enzyme is a very slow process, even in the presence of Mg2+. The Zn2+-alkaline phosphatase and Mg2+-alkaline phosphatase, which only differ by the ion bound to an apparent modulator site, have the same catalytic activity at pH less than 7.0, but the Zn2+ species has little activity at alkaline pH. Phosphorylation of the enzyme by orthophosphate indicates that with both enzyme species phosphoryl intermediate does not accumulate at alkaline pH. These results suggest that with orthophosphate, the phosphorylation step is rate determining for both enzymes, and that Zn2+ affects this step to a much greater extent. It is proposed that Zn2+ and Mg2+ regulate alkaline phosphatase in rat placenta. The concentration of both ions in maternal serum and placenta suggest that such a mechanism could exist in vivo.  相似文献   

9.
The binding mechanism of Mg(2+) at the M3 site of human placental alkaline phosphatase was found to be a slow-binding process with a low binding affinity (K(Mg(app.)) = 3.32 mM). Quenching of the intrinsic fluorescence of the Mg(2+)-free and Mg(2+)-containing enzymes by acrylamide showed almost identical dynamic quenching constant (K(sv) = 4.44 +/- 0.09 M(-1)), indicating that there is no gross conformational difference between the M3-free and the M3-Mg(2+) enzymes. However, Zn(2+) was found to have a high affinity with the M3 site (K(Zn(app.)) = 0.11 mM) and was observed as a time-dependent inhibitor of the enzyme. The dependence of the observed transition rate from higher activity to lower activity (k(obs)) at different zinc concentrations resulted in a hyperbolic curve suggesting that zinc ion induces a slow conformational change of the enzyme, which locks the enzyme in a conformation (M3'-Zn) having an extremely high affinity for the Zn(2+) (K*(Zn(app.)) = 0.33 microM). The conformation of the M3'-Zn enzyme, however, is unfavorable for the catalysis by the enzyme. Both Mg(2+) activation and Zn(2+) inhibition of the enzyme are reversible processes. Structural information indicates that the M3 site, which is octahedrally coordinated to Mg(2+), has been converted to a distorted tetrahedral coordination when zinc ion substitutes for magnesium ion at the M3 site. This conformation of the enzyme has a small dynamic quenching constant for acrylamide (K(sv) = 3.86 +/- 0.04 M(-1)), suggesting a conformational change. Both Mg(2+) and phosphate prevent the enzyme from reaching this inactive structure. GTP plays an important role in reactivating the Zn-inhibited enzyme activity. We propose that, under physiological conditions, magnesium ion may play an important modulatory role in the cell for protecting the enzyme by retaining a favorable geometry of the active site needed for catalysis.  相似文献   

10.
The crystal structure of three mutants of Escherichia coli alkaline phosphatase with catalytic activity (k(cat)) enhancement as compare to the wild-type enzyme is described in different states. The biological aspects of this study have been reported elsewhere. The structure of the first mutant, D330N, which is threefold more active than the wild-type enzyme, was determined with phosphate in the active site, or with aluminium fluoride, which mimics the transition state. These structures reveal, in particular, that this first mutation does not alter the active site. The second mutant, D153H-D330N, is 17-fold more active than the wild-type enzyme and activated by magnesium, but its activity drops after few days. The structure of this mutant was solved under four different conditions. The phosphate-free enzyme was studied in an inactivated form with zinc at site M3, or after activation by magnesium. The comparison of these two forms free of phosphate illustrates the mechanism of the magnesium activation of the catalytic serine residue. In the presence of magnesium, the structure was determined with phosphate, or aluminium fluoride. The drop in activity of the mutant D153H-D330N could be explained by the instability of the metal ion at M3. The analysis of this mutant helped in the design of the third mutant, D153G-D330N. This mutant is up to 40-fold more active than the wild-type enzyme, with a restored robustness of the enzyme stability. The structure is presented here with covalently bound phosphate in the active site, representing the first phosphoseryl intermediate of a highly active alkaline phosphatase. This study shows how structural analysis may help to progress in the improvement of an enzyme catalytic activity (k(cat)), and explains the structural events associated with this artificial evolution.  相似文献   

11.
Rat placental alkaline phosphatase (EC 3.1.3.1), a dimer of 135,000 daltons, is strongly activated by Mg2+. However, Zn2+ has to be present on the apoenzyme to obtain this activation. Mg2+ alone is unable to reconstitute functional active sites. Excess Zn2+ which competes for the Mg2+ site leads to a phosphatase with little catalytic activity at alkaline pH but with normal active sites at acidic pH as shown by covalent incorporation of ortho-[32P]phosphate. Two enzyme species with identical functional active sites have been reconstituted that only differ by the presence of Zn2+ or Mg2+ at the effector site. A mechanism is presented by which alkaline phosphatase activity of rat placenta would be controlled by a molecular process involving the interaction of Mg2+ and Zn2+ with the dimeric enzyme molecule.  相似文献   

12.
The hyperthermophilic bacterium Thermotoga maritima encodes a gene sharing sequence similarities with several known genes for alkaline phosphatase (AP). The putative gene was isolated and the corresponding protein expressed in Escherichia coli, with and without a predicted signal sequence. The recombinant protein showed phosphatase activity toward the substrate p-nitrophenyl-phosphate with a k(cat) of 16 s(-1) and a K(m) of 175 microM at a pH optimum of 8.0 when assayed at 25 degrees C. T. maritima phosphatase activity increased at high temperatures, reaching a maximum k(cat) of 100 s(-1), with a K(m) of 93 microM at 65 degrees C. Activity was stable at 65 degrees C for >24 h and at 90 degrees C for 5 h. Phosphatase activity was dependent on divalent metal ions, specifically Co(II) and Mg(II). Circular dichroism spectra showed that the enzyme gains secondary structure on addition of these metals. Zinc, the most common divalent metal ion required for activity in known APs, was shown to inhibit the T. maritima phosphatase enzyme at concentrations above 0.3 moles Zn: 1 mole monomer. All activity was abolished in the presence of 0.1 mM EDTA. The T. maritima AP primary sequence is 28% identical when compared with E. coli AP. Based on a structural model, the active sites are superimposable except for two residues near the E. coli AP Mg binding site, D153 and K328 (E. coli numbering) corresponding to histidine and tryptophan in T. maritima AP, respectively. Sucrose-density gradient sedimentation experiments showed that the protein exists in several quaternary forms predominated by an octamer.  相似文献   

13.
Ferrochelatase, the terminal enzyme in heme biosynthesis, catalyses metal insertion into protoporphyrin IX. The location of the metal binding site with respect to the bound porphyrin substrate and the mode of metal binding are of central importance for understanding the mechanism of porphyrin metallation. In this work we demonstrate that Zn(2+), which is commonly used as substrate in assays of the ferrochelatase reaction, and Cd(2+), an inhibitor of the enzyme, bind to the invariant amino acids His183 and Glu264 and water molecules, all located within the porphyrin binding cleft. On the other hand, Mg(2+), which has been shown to bind close to the surface at 7 A from His183, was largely absent from its site. Activity measurements demonstrate that Mg(2+) has a stimulatory effect on the enzyme, lowering K(M) for Zn(2+) from 55 to 24 micro M. Changing one of the Mg(2+) binding residues, Glu272, to serine abolishes the effect of Mg(2+). It is proposed that prior to metal insertion the metal may form a sitting-atop (SAT) complex with the invariant His-Glu couple and the porphyrin. Metal binding to the Mg(2+) site may stimulate metal release from the protein ligands and its insertion into the porphyrin.  相似文献   

14.
Alkaline phosphatase. 31P NMR probes of the mechanism   总被引:1,自引:0,他引:1  
31P NMR signals from substrates and products of alkaline phosphatase have been adapted to measure the rates and product ratios for the hydrolysis and phosphotransferase reactions from pH 6 to 10. Below pH 8, glycerol is a poorer acceptor than H2O (glycerol phosphates:Pi = 0.5). Tris is a more effective acceptor below pH 8, showing a maximum acceptor efficiency at pH 8 (Tris phosphate:Pi = 2). Phosphotransferase efficiencies are in the order expected for the pKaS of the alcohol groups, Tris less than glycerol Cl, C3 less than glycerol C2. Tris and glycerol induce chemical shifts in 113Cd(II) present at the A site but not the B or C sites of the metal triad present at each active center of Cd(II)6 alkaline phosphatase, suggesting that the alcoxides of the acceptors coordinate the A site metal and become the nucleophiles attacking the phosphoseryl residue (E-P) in the second step of the mechanism. The interaction is through the oxygen of Tris. The transferase activity of the amino alcohol shows a bell-shaped pH dependency. Aliphatic alcohol acceptors show small increases in acceptor activity between pH 6 and 8, with 5-fold increases from pH 8 to 10 (at pH 10, glycerol phosphates:Pi = 2.5). 31P NMR inversion transfer has been used to measure the koff for Pi dissociation from the noncovalent enzyme complex (E . P). For the Zn(II)4 alkaline phosphatase koff is essentially pH independent at approximately 35 s-1. For Cd(II) or Mg(II) at the B site in place of Zn(II), koff less than or equal to 1 s-1 X Cl-ion, which appears to coordinate the A site metal ion, enhances koff, suggesting that both Cl- and HPO2-4 can coordinate the A site metal ion in a 5-coordinate intermediate. pH control of the alkaline phosphatase mechanism appears to reside in the stability of E-P and not the dissociation of E . P, compatible with the hypothesis that the activity-linked pKa is that of a H2O molecule coordinated to the A site metal, which in the hydroxide form becomes the nucleophile attacking the phosphoseryl group (E-P).  相似文献   

15.
To understand the differences between the rat intestinal alkaline phosphatase isozymes rIAP-I and rIAP-II, we constructed structural models based on the previously determined crystal structure for human placental alkaline phosphatase (hPLAP). Our models of rIAP-I and rIAP-II displayed a typical alpha/beta topology, but the crown domain of rIAP-I contained an additional beta-sheet, while the embracing arm region of rIAP-II lacked the alpha-helix, when each model was compared to hPLAP. The representations of surface potential in the rIAPs were predominantly positive at the base of the active site. The coordinated metal at the active site was predicted to be a zinc triad in rIAP-I, whereas the typical combination of two zinc atoms and one magnesium atom was proposed for rIAP-II. Using metal-depleted extracts from rat duodenum or jejunum and hPLAP, we performed enzyme assays under restricted metal conditions. With the duodenal and jejunal extract, but not with hPLAP, enzyme activity was restored by the addition of zinc, whereas in nonchelated extracts, the addition of zinc inhibited duodenal IAP and hPLAP, but not jejunal IAP. Western blotting revealed that nearly all of the rIAP in the jejunum extracts was rIAP-I, whereas in duodenum the percentage of rIAP-I (55%) correlated with the degree of AP activation (60% relative to that seen with jejunal extracts). These data are consistent with the presence of a triad of zinc atoms at the active site of rIAP-I, but not rIAP-II or hPLAP. Although no differences in amino acid alignment in the vicinity of metal-binding site 3 were predicted between the rIAPs and hPLAP, the His153 residue of both rIAPs was closer to the metal position than that in hPLAP. Between the rIAPs, a difference was observed at amino acid position 317 that is indirectly related to the coordination of the metal at metal-binding site 3 and water molecules. These findings suggest that the side-chain position of His153, and the alignment of Q317, might be the major determinants for activation of the zinc triad in rIAP-I.  相似文献   

16.
Family II inorganic pyrophosphatases (PPases) have been recently found in a variety of bacteria. Their primary and tertiary structures differ from those of the well-known family I PPases, although both have a binuclear metal center directly involved in catalysis. Here, we examined the effects of mutating one Glu, four His, and five Asp residues forming or close to the metal center on Mn(2+) binding affinity, catalysis, oligomeric structure, and thermostability of the family II PPase from Bacillus subtilis (bsPPase). Mutations H9Q, D13E, D15E, and D75E in two metal-binding subsites caused profound (10(4)- to 10(6)-fold) reductions in the binding affinity for Mn(2+). Most of the mutations decreased k(cat) for MgPP(i) by 2-3 orders of magnitude when measured with Mn(2+) or Mg(2+) bound to the high-affinity subsite and Mg(2+) bound to both the low-affinity subsite and pyrophosphate. In the E78D variant, the k(cat) for the Mn-bound enzyme was decreased 120-fold, converting bsPPase from an Mn-specific to an Mg-specific enzyme. K(m) values were less affected by the mutations, and, interestingly, were decreased in most cases. Mutations of His(97) and His(98) residues, which lie near the subunit interface, greatly destabilized the bsPPase dimer, whereas most other mutations stabilized it. Mn(2+), in sharp contrast to Mg(2+), conferred high thermostability to wild-type bsPPase, although this effect was reduced by all of the mutations except D203E. These results indicate that family II PPases have a more integrated active site structure than family I PPases and are consequently more sensitive to conservative mutations.  相似文献   

17.
dCTP deaminase (EC 3.5.4.13) catalyzes the deamination of dCTP forming dUTP that via dUTPase is the main pathway providing substrate for thymidylate synthase in Escherichia coli and Salmonella typhimurium. dCTP deaminase is unique among nucleoside and nucleotide deaminases as it functions without aid from a catalytic metal ion that facilitates preparation of a water molecule for nucleophilic attack on the substrate. Two active site amino acid residues, Arg(115) and Glu(138), were identified by mutational analysis as important for activity in E. coli dCTP deaminase. None of the mutant enzymes R115A, E138A, or E138Q had any detectable activity but circular dichroism spectra for all mutant enzymes were similar to wild type suggesting that the overall structure was not changed. The crystal structures of wild-type E. coli dCTP deaminase and the E138A mutant enzyme have been determined in complex with dUTP and Mg(2+), and the mutant enzyme also with the substrate dCTP and Mg(2+). The enzyme is a third member of the family of the structurally related trimeric dUTPases and the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii. However, the C-terminal fold is completely different from dUTPases resulting in an active site built from residues from two of the trimer subunits, and not from three subunits as in dUTPases. The nucleotides are well defined as well as Mg(2+) that is tridentately coordinated to the nucleotide phosphate chains. We suggest a catalytic mechanism for the dCTP deaminase and identify structural differences to dUTPases that prevent hydrolysis of the dCTP triphosphate.  相似文献   

18.
We have probed the structural/functional relationship of key residues in human placental alkaline phosphatase (PLAP) and compared their properties with those of the corresponding residues in Escherichia coli alkaline phosphatase (ECAP). Mutations were introduced in wild-type PLAP, i.e. [E429]PLAP, and in some instances also in [G429]PLAP, which displays properties characteristic of the human germ cell alkaline phosphatase isozyme. All active site metal ligands, as well as residues in their vicinity, were substituted to alanines or to the homologous residues present in ECAP. We found that mutations at Zn2 or Mg sites had similar effects in PLAP and ECAP but that the environment of the Zn1 ion in PLAP is less affected by substitutions than that in ECAP. Substitutions of the Mg and Zn1 neighboring residues His-317 and His-153 increased k(cat) and increased K(m) when compared with wild-type PLAP, contrary to what was predicted by the reciprocal substitutions in ECAP. All mammalian alkaline phosphatases (APs) have five cysteine residues (Cys-101, Cys-121, Cys-183, Cys-467, and Cys-474) per subunit, not homologous to any of the four cysteines in ECAP. By substituting each PLAP Cys by Ser, we found that disrupting the disulfide bond between Cys-121 and Cys-183 completely prevents the formation of the active enzyme, whereas the carboxyl-terminally located Cys-467-Cys-474 bond plays a lesser structural role. The substitution of the free Cys-101 did not significantly affect the properties of the enzyme. A distinguishing feature found in all mammalian APs, but not in ECAP, is the Tyr-367 residue involved in subunit contact and located close to the active site of the opposite subunit. We studied the A367 and F367 mutants of PLAP, as well as the corresponding double mutants containing G429. The mutations led to a 2-fold decrease in k(cat), a significant decrease in heat stability, and a significant disruption of inhibition by the uncompetitive inhibitors l-Phe and l-Leu. Our mutagenesis data, computer modeling, and docking predictions indicate that this residue contributes to the formation of the hydrophobic pocket that accommodates and stabilizes the side chain of the inhibitor during uncompetitive inhibition of mammalian APs.  相似文献   

19.
Human placental and germ cell alkaline phosphatases (PLAP and GCAP, respectively), are characterized by their differential sensitivities to inhibition by L-leucine, EDTA, and heat. Yet, they differ by only 7 amino acids at positions 15, 67, 68, 84, 241, 254, and 429 within their respective 484 residues. To determine the structural basis and the amino acid(s) involved in these physicochemical differences, we constructed three GCAP mutants by site-directed mutagenesis and six GCAP/PLAP chimeras and then expressed these alkaline phosphatase mutants in COS-1 cells. We report that the differential reactivity of PLAP and GCAP depends critically on a single amino acid at position 429. GCAP with Gly-429 is strongly inhibited by L-leucine, EDTA, and heat, whereas PLAP with Glu-429 is resistant. By substituting Gly-429 of GCAP with a series of amino acids, we demonstrate that the relative sensitivities of these mutants to L-leucine, EDTA, and heat inhibition are, in general, parallel. Mutants in the order of resistance to these treatments are: Glu (most resistant), Asp/Ile/Leu, Gln/Val/Lys, Ser/His, and Arg/Thr/Met/Cys/Phe/Trp/Tyr/Pro/Asn/Ala/Gly (least resistant). However, the Ser-429 and His-429 mutants were more resistant to EDTA and heat inhibition than the wild-type GCAP, but were equally sensitive to L-leucine inhibition. Structural analysis of mammalian alkaline phosphatase modeled on the refined crystal structure of Escherichia coli alkaline phosphatase indicates that the negative charge of Glu-429 of PLAP, which simultaneously stabilizes the protein as a whole and the metal binding specifically, probably acts through interactions with the metal ligand His-320 (His-331 in E. coli alkaline phosphatase). Replacement of codon 429 with Gly in GCAP leads to destabilization and loosening of the metal binding. The data suggest that the natural binding site for L-leucine may be near position 429, with the amino and carboxyl groups of L-leucine interacting with bound phosphate and His-432 (His-412 in E. coli alkaline phosphatase), respectively.  相似文献   

20.
In Reuber rat hepatoma cells (R-Y121B), alkaline phosphatase activity increased without de novo enzyme synthesis (Sorimachi, K., and Yasumura, Y. (1986) Biochim. Biophys. Acta 885, 272-281). The enzyme was partially purified by butanol extraction from the particulate fractions. The incubation of the extracted alkaline phosphatase with the cytosol fraction induced a large increase in enzyme activity (5-10-fold of control). The dialyzed cytosol was more effective than the undialyzed cytosol during an early period of incubation at 37 degrees C. This difference between the dialyzed and the undialyzed cytosol fractions was due to endogenous Na+. For maximal activation of the enzyme, both Mg2+ above 1 mM and Zn2+ at low concentrations (below 0.01 mM) were needed, although Zn2+ at high concentrations (above 0.1 mM) showed an inhibitory effect. Zn2+ and Mg2+ alone slightly increased alkaline phosphatase activity. This activation of the enzyme was temperature dependent and was not observed at 0 or 4 degrees C. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the increase in alkaline phosphatase activity did not involve the fragmentation of the enzyme and that 65Zn2+ bound to it during enzyme activation with 65Zn2+ and Mg2+. The cytosol fraction not only supplied Zn2+ to the nascent enzyme but also increased the maximal enzyme activity more than did direct addition of metal ions. Ferritin and metallothionein contributed to the activation of alkaline phosphatase with the metal ions. Since the binding of Zn2+ and Mg2+ to the nascent alkaline phosphatase is disturbed in Reuber rat hepatoma cells (R-Y121B), the apoenzyme is accumulated inside the cells. The binding of Zn2+ and Mg2+ to the apoenzyme readily takes place in the cell homogenates accompanied by an increase in catalytic activity without new enzyme synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号