首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidation of vanadyl sulfate by H2O2 involves multiple reactions at neutral pH conditions. The primary reaction was found to be oxidation of V(IV) to V(V) using 0.5 equivalent of H2O2, based on the loss of blue color and the visible spectrum. The loss of V(IV) and formation V(V) compounds were confirmed by ESR and51V-NMR spectra, respectively. In the presence of excess H2O2 (more than two equivalents), the V(V) was converted into diperoxovanadate, the major end-product of these reactions, identified by changes in absorbance in ultraviolet region and by the specific chemical shift in NMR spectrum. The stoichiometric studies on the H2O2 consumed in this reaction support the occurrence of reactions of two-electron oxidation followed by complexing two molecules of H2O2. Addition of a variety of compounds—Tris, ethanol, mannitol, benzoate, formate (hydroxyl radical quenching), histidine, imidazole (singlet oxygen quenching), and citrate—stimulated a secondary reaction of oxygen-consumption that also used V(IV) as the reducing source. This reaction requires concomitant oxidation of vanadyl by H2O2, favoured at low H2O2:V(IV) ratio. Another secondary reaction of oxygen release was found to occur during vanadyl oxidation by H2O2 in acidic medium in which the end-product was not diperoxovanadate but appears to be a mixture of VO 3 + (–546 ppm), VO3+ (–531 ppm) and VO 2 + (–512 ppm), as shown by the51V-NMR spectrum. This reaction also occurred in phosphate-buffered medium but only on second addition of vanadyl. The compounds that stimulated the oxygen-consumption reaction were found to inhibit the oxygen-release reaction. A combination of these reactions occur depending on the proportion of the reactants (vanadyl and H2O2), the pH of the medium and the presence of some compounds that affect the secondary reactions.  相似文献   

2.
Addition of vanadate, stimulated oxidation of NADH by rat liver microsomes. The products were NAD+ and H2O2. High rates of this reaction were obtained in the presence of phosphate buffer and at low pH values. The yellow-orange colored polymeric form of vanadate appears to be the active species and both ortho- and meta-vanadate gave poor activities even at mM concentrations.The activity as measured by oxygen uptake was inhibited by cyanide, EDTA, mannitol, histidine, ascorbate, noradrenaline, adriamycin, cytochrome c, Mn2+, superoxide dismutase, horseradish peroxidase and catalase. Mitochondrial outer membranes possess a similar activity of vanadate-stimulated NADH oxidation. But addition of mitochondria and some of its derivative particles abolished the microsomal activity. In the absence of oxygen, disappearance of NADH measured by decrease in absorbance at 340 nm continued at nearly the same rate since vanadate served as an electron acceptor in the microsomal system. Addition of excess catalase or SOD abolished the oxygen uptake while retaining significant rates of NADH disappearance indicating that the two activities are delinked. A mechanism is proposed wherein oxygen receives the first electron from NAD radical generated by oxidation of NADH by phosphovanadate and the consequent reduced species of vanadate (Viv) gives the second electron to superoxide to reduce it H2O2. This is applicable to all membranes whereas microsomes have the additional capability of reducing vanadate.  相似文献   

3.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

4.
5.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

6.
This is the first report on the generation of H2O2 by brown adipose tissue mitochondria. Flavin dehydrogenase-linked substrates like succinate, glycerol-1-phosphate, and fatty acyl CoA were good substrates for the reaction, while NAD+-linked substrates were less effective. In cold-acclimated animals the activity showed a substantial increase (2.5-fold). TheK m andV max of the reaction were considerably lower than those of the respective dehydrogenase. Metal ions, particularly Cu2+ and Fe2+ were potent inhibitors of the reaction. Nucleoside diphosphates, which were inhibitors by themselves, potentiated the inhibitory action of Fe2+ ions. In most of the properties, the H2O2 generator of brown adipose tissue mitochondria resembled that of liver mitochondria.  相似文献   

7.
The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.  相似文献   

8.
β-Amyloid peptide (Aβ) 1–42, involved in the pathogenesis of Alzheimer’s disease, binds copper ions to form Aβ · Cun complexes that are able to generate H2O2 in the presence of a reductant and O2. The production of H2O2 can be stopped with chelators. More reactive than H2O2 itself, hydroxyl radicals HO (generated when a reduced redox active metal complex interacts with H2O2) are also probably involved in the oxidative stress that creates brain damage during the disease. We report in the present work a method to monitor the effect of chelating agents on the production of hydrogen peroxide by metallo-amyloid peptides. The addition of H2O2 associated to a pre-incubation step between ascorbate and Aβ · Cun allows to study the formation of H2O2 but also, at the same time, its transformation by the copper complexes. Aβ · Cun peptides produce but do not efficiently degrade H2O2. The reported analytic method, associated to precipitation experiments of copper-containing amyloid peptides, allows to study the inhibition of H2O2 production by chelators. The action of a ligand such as EDTA is probably due to the removal of the copper ions from Aβ · Cun, whereas bidentate ligands such as 8-hydroxyquinolines probably act via the formation of ternary complexes with Aβ · Cun. The redox activity of these bidentate ligands can be modulated by the incorporation or the modification of substituents on the quinoline heterocycle.  相似文献   

9.
茉莉酸类物质(JAs)作为与昆虫啃噬及损伤相关的植物激素和信号分子在植物防御反应中起重要作用,但是茉莉酸引起的早期防御反应的机理仍不清楚。该研究以拟南芥叶片保卫细胞为材料,结合非损伤微测(NMT)及激光共聚焦技术探讨了茉莉酸诱导的保卫细胞中质膜H+-ATPase与H2O2积累的调控关系。结果表明:茉莉酸甲酯(MeJA)处理导致H+迅速跨膜外排和H2O2积累,H+外排和H2O2积累能够被钒酸钠抑制,而二苯基碘(DPI)处理则对MeJA诱导的H+跨膜外排无显著影响。研究结果证明,在MeJA诱导的早期信号事件中,质膜H+-ATPase的激活先于H2O2的产生。  相似文献   

10.
Con A stimulated lymphocytes proliferation was measured as [3H]thymidine incorporation and IgG was quantified by single radial immunodiffusion to study recovering or protecting effect of selenium (Se) on immunity attacked by exogenous active oxygen species, H2O2 and60Co-radiation, respectively. Lipid peroxidation was also determined to observe the relation between antioxidation ability and protecting ability of Se. It was found that H2O2 injured lymphocytes immunocompetence deeply and60Co-radiation decreased immune response capacity greatly, but that administration of Se counteracts this damage. The antioxidative ability of Se was correlated with its protecting ability.  相似文献   

11.
Rolf A. Løvstad 《Biometals》2003,16(3):435-439
Xanthine oxidase reduces molecular oxygen to H2O2 and superoxide radicals during its catalytic action on xanthine, hypoxanthine or acetaldehyde. Ascorbate is catalytically oxidized by the superoxide radicals generated, when present in the reaction solution (Nishikimi 1975). The present study shows that iron ions markedly stimulate the enzyme dependent ascorbate oxidation, by acting as a red/ox-cycling intermediate between the oxidase and ascorbate. An apparent Km-value of 10.8 M characterized the iron stimulatory effect on the reaction at pH 6.0. Reduced transition-state metals can be oxidized by H2O2 through a Fenton-type reaction. Catalase was found to reduce the effect of iron on the enzyme dependent ascorbate oxidation, strongly suggesting that H2O2, produced during catalysis, is involved in the oxidation of ferrous ions.  相似文献   

12.
A great number of important chemical reactions that occur in the environment are microbially mediated. In order to understand the kinetics of these reactions it is necessary to develop methods to directly measure in situ reaction rates and to develop models to help elucidate the mechanisms of microbial catalysis. The oxidation of Mn(II) in a zone above the O2/H2S interface in Saanich Inlet, B.C., Canada is one such reaction. We present here a method by which in situ rates of microbial Mn(II) oxidation are measured and a model based on our experimental results to describe the general mechanism of Mn(H) oxidation. We propose a two step process in which Mn(II) is first bound by a site on the bacterial surface and then oxidized. The model is analogous to the Langmuir isotherm model for surface catalyzed gas reactions or the Michaelis-Menten model for enzyme kinetics. In situ Mn(II) oxidation rates were measured during five cruises to Saanich Inlet during the summers of 1983 and 1984. We use the model to calculate the apparent equilibrium binding constant (Ks 0.18 M), the apparent half saturation constant for biological Mn(H) oxidation (Km = 0.22 to 0.89 M), the maximum rate of Mn(II) oxidation (Vmax = 3.5 to 12.1 nM·h-1) and the total microbial surface binding site concentration ( E 51 nM). Vmax for Mn(II) oxidation agrees with the rates calculated from the value of the flux of Mn(II) to the oxidizing zone using the Mn(II) gradient and estimates of the eddy diffusion coefficient. This consistancy verifies our methodology and indicates that the rate of Mn(II) oxidation is nearly equal to the (Vmax for the reaction. We conclude that in this environment the Mn(II) oxidation rate is more a function of the total number of surface binding sites than the Mn(H) concentration.Contribution #1601 from the School of Oceanography, Univ. of Washingtoncorresponding author  相似文献   

13.
Two isomeric dibenzo-O2S2 macrocycles L1 and L2 have been synthesised and their coordination chemistry towards palladium(II) has been investigated. Two-step approaches via reactions of 1:1-type complexes, [cis-Cl2LPd] (1a: L = L1, 1b: L = L2), with different O2S2 macrocycle systems (L1 and L2) have led to the isolation of the following bis(O2S2 macrocycle) palladium(II) complexes in the solid state: [Pd(L1)2](ClO4)2 (2a) and a mixture of [Pd(L1)2](ClO4)2 (2a) + [Pd(L2)2](ClO4)2 (2b).  相似文献   

14.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves.  相似文献   

15.
《Free radical research》2013,47(11-12):1366-1378
Abstract

The NADPH oxidase (NOX) family of enzymes oxidase catalyzes the transport of electrons from NADPH to molecular oxygen and generates O2??, which is rapidly converted into H2O2. We aimed to identify in hepatocytes the protein NOX complex responsible for H2O2 synthesis after α1-adrenoceptor (α1-AR) stimulation, its activation mechanism, and to explore H2O2 as a potential modulator of hepatic metabolic routes, gluconeogenesis, and ureagenesis, stimulated by the ARs. The dormant NOX2 complex present in hepatocyte plasma membrane (HPM) contains gp91phox, p22phox, p40phox, p47phox, p67phox and Rac 1 proteins. In HPM incubated with NADPH and guanosine triphosphate (GTP), α1-AR-mediated H2O2 synthesis required all of these proteins except for p40phox. A functional link between α1-AR and NOX was identified as the Gα13 protein. Alpha1-AR stimulation in hepatocytes promotes Rac1-GTP generation, a necessary step for H2O2 synthesis. Negative cross talk between α1-/β-ARs for H2O2 synthesis was observed in HPM. In addition, negative cross talk of α1-AR via H2O2 to β-AR-mediated stimulation was recorded in hepatocyte gluconeogenesis and ureagenesis, probably involving aquaporine activity. Based on previous work we suggest that H2O2, generated after NOX2 activation by α1-AR lightening in hepatocytes, reacts with cAMP-dependent protein kinase A (PKA) subunits to form an oxidized PKA, insensitive to cAMP activation that prevented any rise in the rate of gluconeogenesis and ureagenesis.  相似文献   

16.
New hydrogen-bonding assemblies were synthesized from the reaction of a metalloligand, [Cu(2,4-pydca)2]2− (LCu) (2,4-pydca = 2,4-pyridinedicarboxylate), with a FeII ion or an imidazole in an aqueous medium and crystallographically characterized. The obtained compounds, [Fe(H2O)6][Cu(2,4-pydca)2] (1) and [Cu(2,4-pydca)(imidazole)2] · 2H2O (2), have metalloligand dimer units, [Cu2(2,4-pydca)4]4− and [Cu2(2,4-pydca)2(imidazole)4], respectively, each of which assembles by π-π (1) and hydrogen-bonding (2) interactions to form 1-D metalloligand arrays. The 1-D metalloligand arrays are linked by rich hydrogen-bonding interactions via H2O molecules.  相似文献   

17.
The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of H2O2 and as H2O2 receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of H2O2, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of H2O2. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of H2O2.  相似文献   

18.
A new procedure for fluorescent detection of intracellular H2O2 in cells transiently expressing the catalyst Horseradish Peroxidase (HRP) is setup and validated. More specific reaction with HRP largely amplifies oxidation of the redox probes used (2′,7′-dichlorodihydrofluorescein and dihydrorhodamine). Expression of HRP does not affect cell viability. The procedure reveals MAO activity, a primary intracellular H2O2 source, in monolayers of intact transfected cells. The probes oxidation rate responds specifically to the MAO activation/inhibition. Their oxidation by MAO-derived H2O2 is sensitive to intracellular H2O2 competitors: it decreases when H2O2 is removed by pyruvate and it increases when the GSH-dependent removal systems are impaired. Specific response was also measured after addition of extracellular H2O2. Oxidation of the fluorescent probes following reaction of H2O2 with endogenous HRP overcomes most criticisms in their use for intracellular H2O2 detection. The method can be applied for direct determination in plate reader and is proposed to detect H2O2 generation in physio-pathological cell models.  相似文献   

19.
《Free radical research》2013,47(1-5):309-317
Desferoxamine (DFO) involvement in several peroxidative systems was studied. These sytems included: a) membranal lipid peroxidation initiated by H2O2-activated metmyoglobin (or methemoglobin); b) phenol-red oxidation by activated metmyoglobin or horseradish peroxidase (HRP): c) β-carotene-linoleate couple oxidation stimulated by lipoxygenase or hemin. Desferrioxamine was found to inhibit all these systems but not ferrioxamine (FO). Phenol-red oxidation by H202-horseradish peroxidase was inhibited competitively with DFO. Kinetic studies using the spectra changes in the Soret region of metmyoglobin suggest a mechanism by which H202 reacts with the iron-heme to form an intermediate of oxy-ferryl myoglobin that subsequently reacts with DFO to return the activated compound to the resting state. These activities of DFO resemble the reaction of other electron donors.  相似文献   

20.
A cell culture of Picea abies (L.) Karst. was used for studies of H2O2 generation during constitutive extracellular lignin formation and after elicitation by cell wall fragments of a pathogenic fungus, Heterobasidium parviporum. Stable, micromolar levels of H2O2 were present in the culture medium during lignin formation. Elicitation induced a burst of H2O2, peaking at ca. 90 min after elicitation. Of exogenous reducing substrates that may be responsible for the synthesis of H2O2 from O2, NADH stimulated H2O2 production irrespective of elicitation. Cysteine (Cys) and glutathione (GSH) partially scavenged the constitutive H2O2, but usually increased or prolonged elicitor-induced H2O2 formation. Culture medium peroxidases were not able to generate H2O2 in vitro with Cys or GSH as reductants. These thiols, however, generated H2O2 non-enzymically at pH 4.5. [35S]Sulphate feeding to spruce cells showed that endogenous sulphur-containing compounds (including GSH, GSSG and cysteic acid) existed in the culture medium. The apoplastic levels of these were, however, undetectable by the monobromobimane method suggesting that their contribution to apoplastic H2O2 formation is probably minor. Azide, an inhibitor of haem-containing enzymes, slightly inhibited constitutive H2O2 generation but strongly delayed the elicitor-induced H2O2 accumulation. Diphenylene iodonium, an inhibitor of flavin-containing enzymes, efficiently inhibited H2O2 production irrespective of elicitation. Elicitation led to downregulation of the expression of several peroxidase genes, and peroxidase activity in the culture medium was slightly reduced. Expression of three other peroxidase genes and a respiratory burst oxidase homologue (rboh) gene were upregulated. These data suggest that both peroxidases and rboh may contribute to H2O2 generation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号