首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report six novel members of the superfamily of human G-protein coupled receptors (GPCRs) found by searches in the human genome databases, termed GPR123, GPR124, GPR125, GPR126, GPR127, and GPR128. Phylogenetic analysis demonstrates that these are additional members of the family of GPCRs with long N-termini, previously termed EGF-7TM, LNB-7TM, B2 or LN-7TM, showing that there exist at least 30 such GPCRs in the human genome. Three of these receptors form their own phylogenetic cluster, while two other places in a cluster with the previously reported HE6 and GPR56 (TM7XN1) and one with EMR1-3. All the novel receptors have a GPS domain in their N-terminus, except GPR123, as well as long Ser/Thr rich regions forming mucin-like stalks. GPR124 and GPR125 have a leucine rich repeat (LRR), an immunoglobulin (Ig) domain, and a hormone-binding domain (HBD). The Ig domain shows similarities to motilin and titin, while the LRR domain shows similarities to LRIG1 and SLIT1-2. GPR127 has one EGF domain while GPR126 and GPR128 do not contain domains that are readily recognized in other proteins beyond the GPS domain. We found several human EST sequences for most of the receptors showing differential expression patterns, which may indicate that some of these receptors participate in central functions while others are more likely to have a role in the immune or reproductive systems.  相似文献   

2.
The adhesion G-protein-coupled receptors (GPCRs) (also termed LN-7TM or EGF-7TM receptors) are membrane-bound proteins with long N-termini containing multiple domains. Here, 2 new human adhesion-GPCRs, termed GPR133 and GPR144, have been found by searches done in the human genome databases. Both GPR133 and GPR144 have a GPS domain in their N-termini, while GPR144 also has a pentraxin domain. The phylogenetic analyses of the 2 new human receptors show that they group together without close relationship to the other adhesion-GPCRs. In addition to the human genes, mouse orthologues to those 2 and 15 other mouse orthologues to human were identified (GPR110, GPR111, GPR112, GPR113, GPR114, GPR115, GPR116, GPR123, GPR124, GPR125, GPR126, GPR128, LEC1, LEC2, and LEC3). Currently the total number of human adhesion-GPCRs is 33. The mouse and human sequences show a clear one-to-one relationship, with the exception of EMR2 and EMR3, which do not seem to have orthologues in mouse. EST expression charts for the entire repertoire of adhesion-GPCRs in human and mouse were established. Over 1600 ESTs were found for these receptors, showing widespread distribution in both central and peripheral tissues. The expression patterns are highly variable between different receptors, indicating that they participate in a number of physiological processes.  相似文献   

3.
We report eight novel members of the superfamily of human G protein-coupled receptors (GPCRs) found by searches in the human genome databases, termed GPR97, GPR110, GPR111, GPR112, GPR113, GPR114, GPR115 and GPR116. Phylogenetic analysis shows that these are additional members of a family of GPCRs with long N-termini, previously termed EGF-7TM, LNB-7TM, B2 or LN-7TM. Five of the receptors form their own phylogenetic cluster, while three others form a cluster with the previously reported HE6 and GPR56 (TM7XN1). All the receptors have a GPS domain in their N-terminus and long Ser/Thr-rich regions forming mucin-like stalks. GPR113 has a hormone binding domain and one EGF domain. GPR112 has over 20 Ser/Thr repeats and a pentraxin domain. GPR116 has two immunoglobulin-like repeats and a SEA box. We found several human EST sequences for most of the receptors showing differential expression patterns, which may indicate that some of these receptors participate in reproductive functions while others are more likely to have a role in the immune system.  相似文献   

4.
The Adhesion G-protein-coupled receptors (GPCRs) are the most complex gene family among GPCRs with large genomic size, multiple introns, and a fascinating flora of functional domains, though the evolutionary origin of this family has been obscure. Here we studied the evolution of all class B (7tm2)-related genes, including the Adhesion, Secretin, and Methuselah families of GPCRs with a focus on nine genomes. We found that the cnidarian genome of Nematostella vectensis has a remarkably rich set of Adhesion GPCRs with a broad repertoire of N-terminal domains although this genome did not have any Secretin GPCRs. Moreover, the single-celled and colony-forming eukaryotes Monosiga brevicollis and Dictyostelium discoideum contain Adhesion-like GPCRs although these genomes do not have any Secretin GPCRs suggesting that the Adhesion types of GPCRs are the most ancient among class B GPCRs. Phylogenetic analysis found Adhesion group V (that contains GPR133 and GPR144) to be the closest relative to the Secretin family in the Adhesion family. Moreover, Adhesion group V sequences in N. vectensis share the same splice site setup as the Secretin GPCRs. Additionally, one of the most conserved motifs in the entire Secretin family is only found in group V of the Adhesion family. We suggest therefore that the Secretin family of GPCRs could have descended from group V Adhesion GPCRs. We found a set of unique Adhesion-like GPCRs in N. vectensis that have long N-termini containing one Somatomedin B domain each, which is a domain configuration similar to that of a set of Adhesion-like GPCRs found in Branchiostoma floridae. These sequences show slight similarities to Methuselah sequences found in insects. The extended class B GPCRs have a very complex evolutionary history with several species-specific expansions, and we identified at least 31 unique N-terminal domains originating from other protein classes. The overall N-terminal domain structure, however, concurs with the phylogenetic analysis of the transmembrane domains, thus enabling us to track the origin of most of the subgroups.  相似文献   

5.
Signaling property study of adhesion G-protein-coupled receptors   总被引:1,自引:0,他引:1  
Gupte J  Swaminath G  Danao J  Tian H  Li Y  Wu X 《FEBS letters》2012,586(8):1214-1219
Adhesion G-protein-coupled receptors (GPCR) are special members of GPCRs with long N-termini containing multiple domains. We overexpressed our collection of receptors together with G-proteins in mammalian cell lines and measured the concentrations of intracellular signaling molecules, such as inositol phosphate and cAMP. Our results show that a subset of tested adhesion GPCRs has constitutive activities and is capable of coupling to a variety of G-proteins. In addition, we have identified a small molecule compound that specifically activates one of the subfamily members, GPR97, and the activation was confirmed by an independent GTPγS assay. These findings suggest classical GPCR screening assays could be applied to de-orphanize these receptors, and provide pharmacological tools to improve understanding of the physiological functions of these receptors.  相似文献   

6.
The Adhesion family of G protein-coupled receptors (GPCRs) includes 33 receptors and is the second largest GPCR family. Most of these proteins are still orphans and fairly little is known of their tissue distribution and evolutionary context. We report the evolutionary history of the Adhesion family protein GPR123 as well as mapping of GPR123 mRNA expression in mouse and rat using in situ hybridization and real-time PCR, respectively. GPR123 was found to be well conserved within the vertebrate lineage, especially within the transmembrane regions and in the distal part of the cytoplasmic tail, containing a potential PDZ binding domain. The real-time PCR data indicates that GPR123 is predominantly expressed in CNS. The in situ data show high expression in thalamic nuclei and regions containing large pyramidal cells like cortex layers 5 and 6 and subiculum. Moreover, we found distinct expression in amygdala, hypothalamus, inferior olive and spinal cord. The CNS specific expression, together with the high sequence conservation between the vertebrate sequences investigated, indicate that GPR123 may have an important role in the regulation of neuronal signal transduction.  相似文献   

7.
We report seven new members of the superfamily of human G protein-coupled receptors (GPCRs) found by searches in the human genome databases, termed GPR100, GPR119, GPR120, GPR135, GPR136, GPR141, and GPR142. We also report 16 orthologues of these receptors in mouse, rat, fugu (pufferfish) and zebrafish. Phylogenetic analysis shows that these are additional members of the family of rhodopsin-type GPCRs. GPR100 shows similarity with the orphan receptor SALPR. Remarkably, the other receptors do not have any close relative among other known human rhodopsin-like GPCRs. Most of these orphan receptors are highly conserved through several vertebrate species and are present in single copies. Analysis of expressed sequence tag (EST) sequences indicated individual expression patterns, such as for GPR135, which was found in a wide variety of tissues including eye, brain, cervix, stomach and testis. Several ESTs for GPR141 were found in marrow and cancer cells, while the other receptors seem to have more restricted expression patterns.  相似文献   

8.
Abstract

Adhesion G-protein-coupled receptors (GPCRs) are the most recently identified and least understood subfamily of GPCRs. Adhesion GPCRs are characterized by unusually long ectodomains with adhesion-related repeats that facilitate cell– cell and cell–cell matrix contact, as well as a proteolytic cleavage site-containing domain that is a structural hallmark of the family. Their unusual chimeric structure of adhesion-related ectodomain with a seven-pass transmembrane domain and cytoplasmic signaling makes these proteins highly versatile in mediating cellular signaling in response to extracellular adhesion or cell motility events. The ligand binding and cytoplasmic signaling modes for members of this family are beginning to be elucidated, and recent studies have demonstrated critical roles for Adhesion GPCRs in planar polarity and other important cell–cell and cell–matrix interactions during development and morphogenesis, as well as heritable diseases and cancer.  相似文献   

9.

Background

Adhesion G protein-coupled receptors (aGPCRs) are the second largest of the five GPCR families and are essential for a wide variety of physiological processes. Zebrafish have proven to be a very effective model for studying the biological functions of aGPCRs in both developmental and adult contexts. However, aGPCR repertoires have not been defined in any fish species, nor are aGPCR expression profiles in adult tissues known. Additionally, the expression profiles of the aGPCR family have never been extensively characterized over a developmental time-course in any species.

Results

Here, we report that there are at least 59 aGPCRs in zebrafish that represent homologs of 24 of the 33 aGPCRs found in humans; compared to humans, zebrafish lack clear homologs of GPR110, GPR111, GPR114, GPR115, GPR116, EMR1, EMR2, EMR3, and EMR4. We find that several aGPCRs in zebrafish have multiple paralogs, in line with the teleost-specific genome duplication. Phylogenetic analysis suggests that most zebrafish aGPCRs cluster closely with their mammalian homologs, with the exception of three zebrafish-specific expansion events in Groups II, VI, and VIII. Using quantitative real-time PCR, we have defined the expression profiles of 59 zebrafish aGPCRs at 12 developmental time points and 10 adult tissues representing every major organ system. Importantly, expression profiles of zebrafish aGPCRs in adult tissues are similar to those previously reported in mouse, rat, and human, underscoring the evolutionary conservation of this family, and therefore the utility of the zebrafish for studying aGPCR biology.

Conclusions

Our results support the notion that zebrafish are a potentially useful model to study the biology of aGPCRs from a functional perspective. The zebrafish aGPCR repertoire, classification, and nomenclature, together with their expression profiles during development and in adult tissues, provides a crucial foundation for elucidating aGPCR functions and pursuing aGPCRs as therapeutic targets.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1296-8) contains supplementary material, which is available to authorized users.  相似文献   

10.
G protein-coupled receptors (GPCRs) are encoded by a vast gene superfamily, reflecting the large number of ligands that must be specifically recognized at any given cell surface. The discovery that the variety of GPCRs is further expanded through the generation of splice variants was therefore somewhat surprising. Studies of the functional consequences of alternative splicing have focused on ligand binding, signaling, constitutive activity, and downregulation. However, GPCRs also appear to interact directly with many other intracellular proteins in addition to G proteins. Intriguingly, the domains involved in these interactions are the predominant sites of variation arising through splicing.  相似文献   

11.
A family of fatty acid binding receptors   总被引:4,自引:0,他引:4  
The family of G protein-coupled receptors (GPCRs) serves as the target for almost a third of currently marketed drugs, and provides the predominant mechanism through which extracellular factors transmit signals to the cell. The discovery of GPCRs with no known ligand has initiated a frenzy of research, with the aim of elucidating the physiological ligands for these "orphan" receptors and revealing new drug targets. The GPR40 family of receptors, tandemly located on chromosome 19q13.1, exhibit 30-40% homology to one another and diverse tissue distribution, yet all are activated by fatty acids. Since agonists of GPR40 are medium to longchain fatty acids and those for GPR41 and 43 are short-chain fatty acids, the family clearly provides an intriguing example of how the ligand specificity, patterns of expression, and function of GPCRs can diverge through evolution. Here we summarize the identification, structure, and pharmacology of the receptors and speculate on the respective physiological roles that the GPR40 family members may play.  相似文献   

12.
G-protein-coupled receptors (GPCRs) have been implicated in the tumorigenesis and metastasis of human cancers and are considered amongst the most desirable targets for drug development. Utilizing a robust quantitative PCR array, we quantified expression of 94 human GPCRs, including 75 orphan GPCRs and 19 chemokine receptors, and 36 chemokine ligands, in 40 melanoma metastases from different individuals and benign nevi. Inter-metastatic site comparison revealed that orphan GPR174 and CCL28 are statistically significantly overexpressed in subcutaneous metastases, while P2RY5 is overexpressed in brain metastases. Comparison between metastases (all three metastatic sites) and benign nevi revealed that 16 genes, including six orphan receptors (GPR18, GPR34, GPR119, GPR160, GPR183 and P2RY10) and chemokine receptors CCR5, CXCR4, and CXCR6, were statistically significantly differentially expressed. Subsequent functional experiments in yeast and melanoma cells indicate that GPR18, the most abundantly overexpressed orphan GPCR in all melanoma metastases, is constitutively active and inhibits apoptosis, indicating an important role for GPR18 in tumor cell survival. GPR18 and five other orphan GPCRs with yet unknown biological function may be considered potential novel anticancer targets in metastatic melanoma.  相似文献   

13.
We report nine new members of the Rhodopsin family of human G protein-coupled receptors (GPCRs) found by searches in the genome databases. BLAST searches and phylogenetic analyses showed that only four of the receptors are closely related to previously characterised GPCRs, GPR150 and GPR154 to oxytocin/vasopressin receptors, GPR152 to CRTH2/FPRs and GPR165 to GPR72/NPYR. Four of the receptors, GPR139, GPR146, GPR153 and GPR162, have one other orphan GPCRs as close relative while GPR148 lacks close relatives. We have identified in total 37 orthologues for the new receptors, primarily from rat, mouse, chicken, fugu and zebrafish. GPR162 and GPR139 are remarkably well conserved while GPR148 seems to be evolving rapidly. Analyses using expressed sequence tags (ESTs) indicate that all the new receptors except GPR153 have the CNS as a major site of expression.  相似文献   

14.
Activator of G protein signaling 3 (AGS3) activates the Gbetagamma mating pathway in yeast in a manner that is independent of heptahelical receptors. It competes with Gbetagamma subunits to bind GDP-bound Gi/o(alpha) subunits via four repeated G protein regulatory (GPR) domains in the carboxyl-terminal half of the molecule. However, little is known about the functional role of AGS3 in cellular signaling. Here the effect of AGS3 on receptor-G protein coupling was examined in an Sf9 cell membrane-based reconstitution system. A GST-AGS3-GPR fusion protein containing the four individual AGS3-GPR domains inhibits receptor coupling to Galpha subunits as effectively as native AGS3 and more effectively than GST fusion proteins containing the individual AGS3-GPR domains. While none of the GPR domains distinguished among the three G(i)alpha subunits, both individual and full-length GPR domains interacted more weakly with G(o)alpha than with G(i)alpha. Cytosolic AGS3, but not membrane-associated AGS3, can interact with G(i)alpha subunits and disrupt their receptor coupling. Immunoblotting studies reveal that cytosolic AGS3 can remove G(i)alpha subunits from the membrane and sequester G(i)alpha subunits in the cytosol. These findings suggest that AGS3 may downregulate heterotrimeric G protein signaling by interfering with receptor coupling.  相似文献   

15.
Activation of the GPCR GPR120 by free fatty acids has been reported to cause GLP-1 release in rodent intestine. One genetic sequence was reported for rodents, while two sequences were reported for human GPR120, BC101175 and NM_181745. A 1086 base pair sequence cloned from cynomolgus monkey colon cDNA has 85.1% and 83.4% homology with the mouse and rat GPR120 sequences, and 97.5% homology with the human BC101175 sequence. No splice variants of the cynomolgus monkey GPR120 receptor were found. Eight non-synonymous cSNPs were discovered with frequencies less than 4% in monkey samples tested. Real-time PCR demonstrated that, like the human, the highest GPR120 expression in cynomolgus monkey is in lung and colon. Studies measuring intracellular calcium release produced by free fatty acids and the small molecule GPR120 agonist GW9508 in cells expressing the cynomolgus monkey GPR120 receptor were compared to those expressing the human BC101175 splice variant. Long-chain free fatty acids produced the greatest response in cynomolgus monkey GPR120-expressing cells. GW9508 had similar efficacy at the cynomolgus monkey and at the BC101175 human GPR120 receptors. The cynomolgus monkey and the human GPR120 (BC101175) receptors have similar sequences and pharmacology. The possible significance of the alternate splice variant in human is discussed.  相似文献   

16.
G protein-coupled receptors (GPCRs) are involved in cell recognition and signaling and their function has been experimentally determined by ligand activation and site-directed mutagenesis. Structurally, GPCRs consist of an extracellular N-terminus and an intracellular C-terminus separated by seven helical transmembrane domains (TM7). The extracellular region is highly glycosylated. The intracellular region binds to G proteins. An epididymal GPCR, designated HE6 (for human epididymis-specific protein 6), is present in the stereocilia projecting from the apical domain of principal cells into the epididymal lumen. In conceptual terms, HE6 wears two hats: an unusually long extracellular region characteristic of cell adhesion proteins, and an intracellular region with binding affinity to G protein. The binding partner to the long extracellular region has not been identified. HE6 has another remarkable feature comparable to the GPCR calcium-independent receptor of alpha-latrotoxin, designated CIRL. Both HE6 and CIRL are endogenously cleaved into two pieces at the GPCR proteolytic site (GPS) located adjacent to TM1, the first of the seven transmembrane helices. One fragment of the heterodimer wears the cell adhesion hat; the other retains the typical characteristics of GPCRs. This proteolytic processing may be regarded as a mechanism of molecular compartmentalization of cell adhesion and G protein activation functions. The latter may engage a beta-arrestin-driven endocytic trafficking mechanism independent from the adhesive properties of the mucin extracellular domain. It is also conceivable that events taking place in the epididymal lumen can be surveyed by the long adhesive rod and subsequently coupled inside principal cells to a signaling cascade.  相似文献   

17.
18.
GPR26 and GPR78 are orphan GPCRs (oGPCRs) that share 51% amino acid sequence identity and are widely expressed in selected tissues of the human brain as well as the developing and adult mouse brain. Investigation of the functional activity of GPR26 and GPR78 via expression in HEK293 cells showed that both proteins are constitutively active and coupled to elevated cAMP production. Accordingly, in yeast, GPR26 demonstrated apparent agonist-independent coupling to a chimeric Gpa1 protein in which the 5 C-terminal amino acids were from Galphas. A comparison of the proteins revealed an atypical glutamine residue in GPR78 in place of the conserved arginine residue (R3.50) in the so-called DRY box. Site-directed mutants R3.50 in GPR26 were constructed and retained their constitutive activity suggesting that these 2 receptors activate G proteins in a manner that is distinct from other group 1 GPCRs.  相似文献   

19.
G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily.  相似文献   

20.
Brain-specific angiogenesis inhibitor 2 (BAI2) is a member of adhesion-G protein-coupled receptors (GPCRs). BAI2 is dominantly expressed in the brain and its physiological ligands and functions are still unclear. Adhesion-GPCRs, including BAI2, commonly have a long N-terminal extracellular region (ECR) containing the GPCR proteolysis site (GPS) and the cleavage of the ECR at the GPS domain is suspected to be important for their function. In this study, we analyzed the proteolytic processing of BAI2 and its activation mechanism. Several cleaved C-terminal fragments of BAI2 were identified in mouse hippocampus. We confirmed that mutation in the GPS domain caused inhibition of the proteolysis of BAI2, which indicated the possibility that BAI2 was cleaved at the GPS domain. The association of the ECR putatively cleaved at the GPS domain and the C-terminal seven-transmembrane (7TM) fragment was detected by co-immunoprecipitation. We also found that furin prohormone convertase cleaved BAI2 at another site in the ECR. Additionally, the C-terminal fragment cleaved at the GPS domain specifically activated the nuclear factor of activated T-cells (NFAT) pathway. These results suggest that BAI2 is a functional GPCR regulated by proteolytic processing and activates the NFAT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号