首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia.  相似文献   

2.
Hereditary ataxias represent a major diagnostic challenge in medical genetics due to the large number of possible genetic causes. This problem has been intensified during the past 3 years by the identification of a large number of novel genes by modern sequencing technologies. However, the newly identified genes are often extremely rare, occurring at only very low frequencies in ataxia families worldwide. We provide an up-to-date overview of dominant and recessive ataxia genes, including those recently identified. We offer practical guidance for genetic diagnosis by providing frequency estimates and—where possible—defining phenotypic features and biomarkers, particularly for recessive ataxias. These diagnostic indicators are summarized by diagnostic pathways that aim to provide orientation within the multiple genetic diagnostic levels of dominant and recessive ataxia. However, given the high number of candidate genes and the large phenotypic overlap, gene panel approaches based on next-generation sequencing technologies will be most time- and cost-efficient for the majority of ataxia cases in the future.  相似文献   

3.
DNA testing broadens diagnostic tools available for hereditary ataxias. However, together with current knowledge of genes and their mutations crop up new phenotype figures of diseases already well known. Diagnostic problems in practice can consist in part due to the very similar symptoms of hereditary ataxias and acquaintance in or availability of new techniques such as DNA testing and result in misdiagnosis. We present a case study of a 57 year-old woman with both expansion of the triplet repetitive sequence of FRDA gene and a premutation in FMR1 gene. At present we diagnose her with Very Late Onset Friedreich s ataxia, but we advise of possible combinations or aggravations of her symptoms due to manifestation of Fragile X premutation tremor/ataxia syndrome. In nontypical phenotypes of DNA verifying hereditary ataxias we recommend searching of comorbidity, specifically from a range of hereditary ataxias with very similar spectra of symptoms.  相似文献   

4.
A substantial portion of the human genome has been found to consist of simple sequence repeats, including microsatellites and minisatellites. Microsatellites, tandem repeats of 1-6 nucleotides, form the template for dynamic mutations, which involve heritable changes in the lengths of repeat sequences. In recent years, a large number of human disorders have been found to be caused by dynamic mutations, the most common of which are trinucleotide repeat expansion diseases. Dynamic mutations are common to numerous nervous system disorders, including Huntington's disease, various spinocerebellar ataxias, fragile X syndrome, fragile X tremor/ataxia syndrome, Friedreich ataxia and other neurodegenerative disorders. The involvement of dynamic mutations in brain disorders will be reviewed, with a focus on the large group caused by CAG/glutamine repeat expansions. We will also outline a proposed role of tandem repeat polymorphisms (TRPs), with unique 'digital' genetic distributions, in modulating brain development and normal function, so as to generate additional mutational diversity upon which natural selection may act.  相似文献   

5.
A number of ataxias have been shown to result from defects in mitochondrial function. The genes responsible for Friedreich ataxia (FRDA) and for X-linked sideroblastic anemia with ataxia are nuclear genes that encode mitochondrial proteins. These genes, which are highly conserved in species as diverse as humans and yeast, play a role in mitochondrial iron metabolism and in the formation of iron-sulfur clusters. Defects in vitamin E metabolism, due to mutations in tocopherol transfer protein (TTP), also result in ataxia. It is hypothesized that the biochemical feature common to these ataxias is increased oxidant damage either through increased oxidants or decreased anti-oxidants.  相似文献   

6.
7.
Cerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include among others, the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as Friedreich's ataxia, and X-linked cerebellar ataxias. Since all cerebellar ataxias display considerable overlap in their disease phenotypes, common pathological pathways must underlie the selective cerebellar neurodegeneration. Therefore, it is important to identify the molecular mechanisms and routes to neurodegeneration that cause cerebellar ataxia. In this review, we discuss the use of functional genomic approaches including whole-exome sequencing, genome-wide gene expression profiling, miRNA profiling, epigenetic profiling, and genetic modifier screens to reveal the underlying pathogenesis of various cerebellar ataxias. These approaches have resulted in the identification of many disease genes, modifier genes, and biomarkers correlating with specific stages of the disease. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

8.
Spinocerebellar ataxias are a group of neurodegenerative disorders caused by dynamic mutations of microsatellite repeats. Two novel forms of SCAs have been described recently: SCA8, with expansions of CTA/CTG repeats in 3'UTR of the SCA8 gene, and SCA12, caused by expansion of the CAG tract in 5'UTR of the SCA12/PP2R2B gene. Analysis of CTA/CTG and CAG polymorphism in those two genes was performed in a Polish control group consisting of 100 individuals without any neurological signs. The distribution and ranges of the number of non-pathogenic repeats were similar to those observed in other populations described previously. Expansion of CTA/CTG repeats in the SCA8 locus was found in 2 of 100 controls and in 5 probands among 150 pedigrees affected with unidentified ataxias. As such expanded alleles were also observed in their healthy relatives, the pathogenic role of expansions in the SCA8 gene remains uncertain.  相似文献   

9.
The hereditary ataxias represent a clinically and genetically heterogeneous group of neurodegenerative disorders. Various classification schemes based on clinical criteria are being replaced as molecular characterization of the ataxias proceeds; so far, seven distinct autosomal dominant hereditary ataxias have been genetically mapped in the human genome. We report linkage to chromosome 16q22.1 for one of these genes (SCA4) in a five-generation family with an autosomal dominant, late-onset spinocerebellar ataxia; the gene is tightly linked to the microsatellite marker D16S397 (LOD score = 5.93 at theta = .00). In addition, we present clinical and electrophysiological data regarding the distinct and previously unreported phenotype consisting of ataxia with the invariant presence of a prominent axonal sensory neuropathy.  相似文献   

10.
In Japan, multiple system atrophy (MSA) accounts for 40% of all spinocerebellar ataxias (SCAs) and hereditary disorders account for 30%. Among the latter, autosomal dominant disorders are common and recessive ataxias are rare. Although the frequency of SCA genotypes differs between geographic regions throughout Japan, SCA6, SCA3/MJD, and DRPLA are the three major disorders, while SCA7, SCA8, SCA10, SCA12, and SCA17 are infrequent or almost undetected. SCA1 predominantly occurs in the northern part of Japan. Overall, 20-40% of dominant SCAs are due to unknown mutations. From this cluster, pure cerebellar ataxias linked with the SCA4, SCA14, and SCA16 locus have been isolated. Among the recessive SCAs, patients with AVED and EAOH have been detected. However, FRDA associated with GAA repeat expansion in the frataxin gene has not been reported so far.  相似文献   

11.
Autosomal recessive cerebellar ataxias are a group of neurodegenerative disorders that are characterized by complex clinical and genetic heterogeneity. Although more than 20 disease-causing genes have been identified, many patients are still currently without a molecular diagnosis. In a two-generation autosomal recessive cerebellar ataxia family, we mapped a linkage to a minimal candidate region on chromosome 16p13.3 flanked by single-nucleotide polymorphism markers rs11248850 and rs1218762. By combining the defined linkage region with the whole-exome sequencing results, we identified a homozygous mutation (c.493CT) in CHIP (NM_005861) in this family. Using Sanger sequencing, we also identified two compound heterozygous mutations (c.389AT/c.441GT; c.621C>G/c.707GC) in CHIP gene in two additional kindreds. These mutations co-segregated exactly with the disease in these families and were not observed in 500 control subjects with matched ancestry. CHIP colocalized with NR2A, a subunit of the N-methyl-D-aspartate receptor, in the cerebellum, pons, medulla oblongata, hippocampus and cerebral cortex. Wild-type, but not disease-associated mutant CHIPs promoted the degradation of NR2A, which may underlie the pathogenesis of ataxia. In conclusion, using a combination of whole-exome sequencing and linkage analysis, we identified CHIP, encoding a U-box containing ubiquitin E3 ligase, as a novel causative gene for autosomal recessive cerebellar ataxia.  相似文献   

12.
Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (~0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.  相似文献   

13.
Autosomal-recessive cerebellar ataxias comprise a clinically and genetically heterogeneous group of neurodegenerative disorders. In contrast to their dominant counterparts, unraveling the molecular background of these ataxias has proven to be more complicated and the currently known mutations provide incomplete coverage for genotyping of patients. By combining SNP array-based linkage analysis and targeted resequencing of relevant sequences in the linkage interval with the use of next-generation sequencing technology, we identified a mutation in a gene and have shown its association with autosomal-recessive cerebellar ataxia. In a Dutch consanguineous family with three affected siblings a homozygous 12.5 Mb region on chromosome 3 was targeted by array-based sequence capture. Prioritization of all detected sequence variants led to four candidate genes, one of which contained a variant with a high base pair conservation score (phyloP score: 5.26). This variant was a leucine-to-arginine substitution in the DUF 590 domain of a 16K transmembrane protein, a putative calcium-activated chloride channel encoded by anoctamin 10 (ANO10). The analysis of ANO10 by Sanger sequencing revealed three additional mutations: a homozygous mutation (c.1150_1151del [p.Leu384fs]) in a Serbian family and a compound-heterozygous splice-site mutation (c.1476+1G>T) and a frameshift mutation (c.1604del [p.Leu535X]) in a French family. This illustrates the power of using initial homozygosity mapping with next-generation sequencing technology to identify genes involved in autosomal-recessive diseases. Moreover, identifying a putative calcium-dependent chloride channel involved in cerebellar ataxia adds another pathway to the list of pathophysiological mechanisms that may cause cerebellar ataxia.  相似文献   

14.
Expansion of CTG/CAG trinucleotide repeats has been shown to cause a number of autosomal dominant cerebellar ataxias (ADCA) such as SCA1, SCA2, SCA3/ MJD, SCA6, SCA7, SCA8 and DRPLA. There is a wide variation in the clinical phenotype and prevalence of these ataxias in different populations. An analysis of ataxias in 42 Indian families indicates that SCA2 is the most frequent amongst all the ADCAs we have studied. In the SCA2 families, together with an intergenerational increase in repeat size, a horizontal increase with the birth order of the offspring was also observed, indicating an important role for parental age in repeat instability. This was strengthened by the detection of a pair of dizygotic twins with expanded alleles showing the same repeat number. Haplotype analysis indicates the presence of a common founder chromosome for the expanded allele in the Indian population. Polymorphism of CAG repeats in 135 normal individuals at the SCA loci studied showed similarity to the Caucasian population but was significantly different from the Japanese population.  相似文献   

15.
We present recent advances in the genetics of recurrent vertigo, including familial episodic ataxias, migraneous vertigo, bilateral vestibular hypofunction and Meniere's disease.Although several vestibular disorders are more common within families, the genetics of vestibulopathies is largely not known. Genetic loci and clinical features of familial episodic ataxias have been defined in linkage disequilibrium studies with mutations in neuronal genes KCNA1 and CACNA1A. Migrainous vertigo is a clinical disorder with a high comorbidity within families much more common in females with overlapping features with episodic ataxia and migraine. Bilateral vestibular hypofunction is a heterogeneous clinical group defined by episodes of vertigo leading to progressive loss of vestibular function which also can include migraine. Meniere's disease is a clinical syndrome characterized by spontaneous episodes of recurrent vertigo, sensorineural hearing loss, tinnitus and aural fullness and familial Meniere's disease in around 10-20% of cases. An international collaborative effort to define the clinical phenotype and recruiting patients with migrainous vertigo and Meniere's disease is ongoing for genome-wide association studies.  相似文献   

16.
Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.  相似文献   

17.
常染色体显性脊髓小脑型共济失调(Autosomal dominant spinocerebellar ataxias, ADCAs)是一种神经系统退行性疾病, 具有高度的遗传异质性, 其中脊髓小脑型共济失调3型(Spinocerebellar ataxias type 3, SCA3)是一种常见的类型。文章通过PCR扩增广西一个脊髓小脑共济失调家系SCA3/MJD基因片段, 用毛细管电泳和测序方法检测了SCA3/MJD基因的CAG重复序列大小、传递特点以及SCA3/MJD基因的变异。结果显示:家系的所有4名患者和3名无症状携带者(Asymptomatic carrier)的SCA3/MJD基因第10外显子中存在异常扩增的CAG重复序列, 重复次数为64~71次; CAG重复次数在具有cgg等位基因的正常个体间传递时保持不变, 提示cgg等位基因不是正常个体两代间CAG重复序列稳定性的影响因素。SCA3/MJD基因中另有两个单碱基点突变, 一个是内含子区的杂合性突变(IVS9-113 T>C), 另一个是外显子区域的错义突变(220 G>A, 220 Glu>Gly)。这两个点突变为首次报道, 但尚不能明确这两个新的点突变对SCA3表型的影响。  相似文献   

18.
DNA triplet repeat expansion-associated ataxias, Friedreich's ataxia, and different types of spinocerebellar ataxias (SCAs) are progressive multisystem neurodegenerative disorders. The diagnosis of this wide group of inherited ataxias is essentially based on clinical findings. Cell-free circulating DNA in plasma has been considered as a powerful tool in clinical diagnosis and prognosis of several human diseases. In the present study, clinically suspected patients were assessed on the International Co-operative Ataxia Rating Scale and further confirmed by molecular analysis of DNA triplet repeats. Quantification of plasma DNA using a highly sensitive and DNA-specific PicoGreen fluorescent assay was done. We found significantly high levels (p?相似文献   

19.
Lim J  Hao T  Shaw C  Patel AJ  Szabó G  Rual JF  Fisk CJ  Li N  Smolyar A  Hill DE  Barabási AL  Vidal M  Zoghbi HY 《Cell》2006,125(4):801-814
Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.  相似文献   

20.
N P Dubinin 《Genetika》1988,24(2):197-203
Rare variants of blood proteins occur, due to mutations (mutant alleles) in monomorphic loci encoding various proteins. A number of authors studied the distribution of these variants in human populations using the method of electrophoresis. The population of USA, South America, Japan, Europe was analysed. 1334 rare variants (1.0.10(-3)) were discovered out of 1,329,558 alleles (test locus in 664,779 individuals). 7 mutant alleles (3.6.10(-6)) were found among 1,957,305 alleles. The low frequency of occurrence of mutations in the loci encoding rare blood protein variants, when testing the speed of mutagenicity and its alteration, necessitates electrophoresis of blood proteins to be done in large scales. A method was proposed, based on accounting rare variants in children with congenital disorders, which are supposed to have a heavy load of mutations. The data collected demonstrated that the majority of rare variants in a given generation were obtained from parents. Accumulation of rare protein variants at low concentrations, as neutral alleles, in conditions of low mutation frequency in monomorphic loci takes place in the population. Comparison of frequencies of rare variants among healthy newborns and the children with congenital disorders revealed their identity (1.0.10(-3)), as compared to 1.05.10(-3)). Simplification of the method for scoring mutations judging by rare blood protein variants, which is necessary for monitoring for gene mutations in human populations, stimulates development of novel approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号