首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate induction in spruce: an approach using compartmental analysis   总被引:6,自引:0,他引:6  
Using 13NO 3 -efflux analysis, the induction of nitrate uptake by externally supplied nitrate was monitored in roots of intact Picea glauca (Moench) Voss. seedlings over a 5-d period. In agreement with our earlier studies, efflux analysis revealed three compartments, which have been identified as surface adsorption, apparent free space, and cytoplasm. While induction of nitrate uptake was pronounced, NO 3 fluxes in induced plants were decidedly lower and the induction response was slower than in other species. Influx rose from 0.1 mol·g–1·h–1 (measured at 100 M [NO 3 o) in uninduced plants to a maximum of 0.5 mol·g–1h–1 after 3 d of exposure to 100 M [NO 3 o and declined to 0.3–0.4 mol·g–1h–1 at the end of the 5-d period. Efflux remained relatively constant around 0.02-0.04 mol·g–1h–1, but its percentage with respect to influx declined from initially high values (around 30%) to steady-state values of 4–7%. Cytoplasmic [NO 3 ] ranged from the low micromolar in uninduced plants to a maximum of 2 mM in plants fully induced at 100 M [NO 3 ]o. In-vivo root nitrate reductase activity (NRA) was measured over the same time period, and was found to follow a similar pattern of induction as influx. The maximum response in NRA slightly preceded that of influx. It increased from 25 nmol·g–1·h–1 without prior exposure to NO 3 to peak values around 150 nmol· g–1h–1 after 2 d of exposure to 100 M [NO 3 ]o. Subsequently, NRA declined by about 50%. The dynamics of flux partitioning to reduction, to the vacuole, the xylem, and to efflux during the induction process are discussed.The research was supported by an Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and by a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. J. Vidmar for essential assistance in experiments.  相似文献   

2.
To investigate whether the in-vivo photoinhibition of photosystem II (PSII) function by excess light is an intrinsic property of PSII, the maximal photochemical efficiency of PSII (Fv/Fm) and the content of functional PSII (measured by repetitive flash yield of oxygen evolution) were determined in leaves of pea (Pisum sativum L.), grown in 50 (low light), 250 (medium light), and 650 (high light) mol photons·m–2·s–1. The modulation of PSII functionality in vivo was induced in 1.1% CO2 by varying either (i) the duration (0–2 h) of light treatment (fixed at 1800 mol photons· m–2·s–1) or (ii) irradiance (0–3200 mol photons·m–2·s–1) at a fixed duration (1 h), after infiltration of leaves with water (control), lincomycin (an inhibitor of chloroplast-encoded protein synthesis), or a combination of lincomycin with nigericin (an uncoupler), through the cut petioles of leaves of 22-to 24-d-old plants. The reciprocity law of irradiance and duration of illumination for PSII function in vivo (Park et al. 1995, Planta 196: 401–411) holds in all differently light-grown peas, demonstrating that inactivation of functional PSII depends on photon exposure (mol photons·m–2), not on the rate of photon absorption. In vivo, PSII acts as an intrinsic photon counter and at higher photon exposures is inactivated following absorption of about 3 × 107 photons. There is a functional heterogeneity of PSII in vivo with 25% less-stable PSIIs that are inactivated at low photon exposure, compared to 75% more-stable PSIIs regardless of modulation of the photosynthetic apparatus. We suggest that the less-stable PSIIs represent monomers located in the nonappressed granal margins, while the more-stable PSIIs are dimers located in the appressed grana membrane cores. The capacity for D1-protein synthesis was the same in all the light-acclimated peas and saturated at low light, indicating that D1-protein repair is also an intrinsic property of PSII. This accounts for the low intensity required for recovery of photoinhibition in sun and shade plants which is independent of light-harvesting antennae size or PSII/PSI stoichiometries.Abbreviations D1-protein psbA gene product - D2 protein psbD gene product - Fo chlorophyll fluorescence corresponding to open PSII reaction centres - Fv, Fm variable and maximum fluorescence after dark incubation, respectively - PS photosystem - QB secondary quinone electron acceptor Financial support for this research by the Department of Employment, Education and Training/Australian Research Council International Research Fellowships Program (Korea) is gratefully acknowledged.  相似文献   

3.
Summary We studied root net uptake of ammonium (NH 4 + ) and nitrate (NO 3 ) in species of the genus Piper (Piperaceae) under high, intermediate and low photosynthetically active photon flux densities (PFD). Plants were grown hydroponically, and then transferred to temperature controlled (25° C) root cuvettes for nutrient uptake determinations. Uptake solutions provided NH 4 + and NO 3 simultaneously (both) or separately (single). In the first experiment, seven species of Piper, from a broad range of rainforest light habitats ranging from gap to understory, were screened for mineral nitrogen preference (100 M NH 4 + and/or 100 M NO 3 ) at intermediate PFD (100 mol m–2 s–1). Preference for NH 4 + relative to NO 3 , defined as the ratio of NH 4 + (both):NO 3 (both) net uptake, was higher in understory species than in gap species. Ammonium repression of NO 3 uptake, defined as the ratio of NO 3 (single): NO 3 (both) net uptake, was also higher in understory species as compared to gap species. In a second set of experiments, we examined the effect of nitrogen concentration (equimolar, 10 to 1000 M) on NH 4 + preference and NH 4 + repression of NO 3 net uptake at high (500 mol m–2 s–1) and low (50 mol m–2 s–1) PFD in a gap (P. auritum), generalist (P. hispidum) and understory species (P. aequale). All species exhibited negligible NH 4 + repression of NO 3 net uptake at high PFD. At low PFD, NH 4 + preference and repression of NO 3 net uptake occurred in all species (understory > generalist > gap), but only at intermediate nitrogen concentrations, i.e. between 10 and 200 M. Ammonium repression of net NO 3 uptake decreased or increased rapidly (in < 48 h) after transitions from low to high or from high to low PFD respectively. No significant diurnal patterns in NO 3 or NH 4 + net uptake were observed.CIWDPB publication # 1130  相似文献   

4.
Summary Subterranean clover plants were grown as swards (about 2000 plants/m2) under controlled conditions with N provided either by N2-fixation (NO 3 withheld) or by assimilation of NO 3 (NO 3 supplied). Crop growth rates were measured by dry matter sampling over periods of up to 70 days at PPFD values of 400–1000 mole quanta/m2/s. When NO 3 was supplied from sowing the swards grew more rapidly than when the swards were not supplied with NO 3 and plants had to establish an N2-fixing apparatus. When inter-plant competition was reduced within the sward, a difference in growth rate in favour of NO 3 -fed plants continued for at least 50 days. When however, a closed canopy was allowed to form, the NO 3 -fed swards had more dry weight than the N2-fed swards at the time of canopy closure but thereafter the two swards grew at similar rates at light flux densities of above about 800 mole quanta/m2/s. At light flux densities of about 400 mole quanta/m2/s N2-fed swards had a growth rate 70–80% of that of NO 3 -fed plants. NO 3 -fed plants had a higher organic N content than did N2-fed plants under all conditions.  相似文献   

5.
Compartmentation and flux characteristics of nitrate in spruce   总被引:8,自引:0,他引:8  
The radiotracer13N was used to undertake compartmental analyses for NO 3 in intact non-mycorrhizal roots ofPicea glauca (Moench) Voss. seedlings. Three compartments were defined, with half-lives of exchange of 2.5 s, 20 s, and 7 min. These were identified as representing surface adsorption, apparent free space, and cytoplasm, respectively. Influx, efflux, and net flux as well as cytoplasmic and apparent-free-space nitrate concentrations were estimated for three different concentration regimes of external nitrate. After exposure to external NO 3 for 3 d, influx was calculated to be 0.09 mol·g–1·h–1 (at 10 M [NO 3 ]o), 0.5mol·g–1·h–1 (at 100 M [NO inf3 sup– ]o), and 1.2 mol · g–1· h–1 (at 1.5 mM [NO 3 ]o). Efflux increased with increasing [NO 3 ]o, constituting 4% of influx at 10 M, 6% at 100 M, and 21% at 1.5 mM. Cytoplasmic [NO 3 ] was estimated to be 0.3 mM at 10 uM [NO 3 ]o, 2mM at 100 M [NO 3 ]o, and 4mM at 1.5 mM [NO 3 ]o, while free-space [NO 3 ] was 16 M, 173 M, and 2.2 mM, respectively. A series of experiments was carried out to confirm the identity of the compartments resolved by efflux analysis. Pretreatment at high temperature or application of 2-chloro-ethanol, sodium dodecyl sulphate or hydrogen peroxide made it possible to distinguish the metabolic (cytoplasmic) phase from the remaining two (physical) phases. Likewise, varying [Pi] of the medium altered efflux and thereby [NO 3 ]cyt, but did not affect [NO 3 ]free space.Abbreviations and Symbols [NO 3 ]cyt cytoplasmic NO 3 concentration - [NO 3 ]free space apparent-free-space NO 3 concentration - [NO 3 ]o concentration of NO 3 in the external solution - NO 3 flux - co efflux from the cytoplasm - oc influx to the cytoplasm - net net flux - xylem flux to the xylem - red/vac combined flux to reduction and the vacuole The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and by a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia Campus for providing13NO 3 , Drs. R.D. Guy and S. Silim for providing plant material, and Dr. M.Y. Wang, Mr. J. Mehroke and Mr. P. Poon for assistance in experiments and for helpful discussions.  相似文献   

6.
Tobacco (Nicotiana tabacum L.) plants transformed with antisense rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 mol·m–2·s–1 irradiance, and at 28°C at 100, 300 and 1000 mol·m–2·s–1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 mol·m–2·s–1)-grown plants are exposed to high (750–1000 mol·m–2·s–1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 mol·m–2·s–1) are suddenly exposed to high and saturating irradiance (1500–2000 mol·m–2·s–1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in sun leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the light reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) Antisense plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.Abbreviations A rate of photosynthesis - C infRubisco supA flux control coefficient of Rubisco for photosynthesis - ci internal CO2 concentration - qE energy-dependent quenching of chlorophyll fluorescense - qQ photochemical quenching of chlorophyll fluorescence - NADP-MDH NADP-dependent malate dehydrogenase - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - RuBP ribulose-1,5-bisphosphate This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

7.
A population ofLolium rigidum Gaud. displays resistance to the herbicide chlorotoluron endowed by enhanced metabolism of this herbicide. The level of resistance in intact plants of this population is light dependent. Resistance is about 4-fold at 110 mol photons·m–2·s–1, but increases to 11-fold at 600 mol photons·m–2·s–1. For seedlings grown in the dark, the rate of chlorotoluron metabolism is identical between biotypes; however, seedlings of the resistant biotype grown in the light display enhanced chlorotoluron metabolism compared to the susceptible biotype. Specifically, light with blue wavelengths induces chlorotoluron metabolism in the resistant biotype. An analysis of the metabolites produced indicates that two routes of chlorotoluron metabolism occur inL. rigidum. These are characterised by initial reactions leading to ringmethyl hydroxylation orN-demethylation of the herbicide. The ring-methyl hydroxylation pathway is increased greatly in light-grown resistant seedlings compared to susceptible seedlings, whereas theN-demethylation pathway is only slightly increased. The differential induction of these two pathways in resistantL. rigidum by light suggests that enhanced activity of two different enzymes may be involved in chlorotoluron resistance.Abbreviations ABT 1-aminobenzotriazole - LD50 dose giving 50% mortality - LSS liquid scintillation spectroscopy  相似文献   

8.
9.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

10.
The light-dependent rate of photosystem-II (PSII) damage and repair was measured in photoautotrophic cultures of Dunaliella salina Teod. grown at different irradiances in the range 50–3000 mol photons · m–2· s–1. Rates of cell growth increased in the range of 50–800 mol photons·m–2·s–1, remained constant at a maximum in the range of 800–1,500 mol photons·m–2 ·s–1, and declined due to photoinhibition in the range of 1500–3000 mol photons·m–2·s–1. Western blot analyses, upon addition of lincomycin to the cultures, revealed first-order kinetics for the loss of the PSII reaction-center protein (D1) from the 32-kDa position, occurring as a result of photodamage. The rate constant of this 32-kDa protein loss was a linear function of cell growth irradiance. In the presence of lincomycin, loss of the other PSII reaction-center protein (D2) from the 34-kDa position was also observed, occurring with kinetics similar to those of the 32-kDa form of D1. Increasing rates of photodamage as a function of irradiance were accompanied by an increase in the steady-state level of a higher-molecular-weight protein complex ( 160-kDa) that cross-reacted with D1 antibodies. The steady-state level of the 160-kDa complex in thylakoids was also a linear function of cell growth irradiance. These observations suggest that photodamage to D1 converts stoichiometric amounts of D1 and D2 (i.e., the D1/D2 heterodimer) into a 160-kDa complex. This complex may help to stabilize the reaction-center proteins until degradation and replacement of D1 can occur. The results indicated an intrinsic half-time of about 60 min for the repair of individual PSII units, supporting the idea that degradation of D1 after photodamage is the rate-limiting step in the PSII repair process.Abbreviations Chl chlorophyll - PSI photosystem I - PSII photosystem II - D1 the 32-kDa reaction-center protein of PSII, encoded by the chloroplast psbA gene - D2 the 34-kDa reactioncenter protein of PSII, encoded by the chloroplast psbD gene - QA primary electron-accepting plastoquinone of PSII The work was supported by grant 94-37100-7529 from the US Department of Agriculture, National Research Initiative Competitive Grants Program.  相似文献   

11.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   

12.
A. Laisk  O. Kiirats  V. Oja  U. Gerst  E. Weis  U. Heber 《Planta》1992,186(3):434-441
Exchange of CO2 and O2 and chlorophyll fluorescence were measured in the presence of 360 1 · 1–1 CO2 in nitrogen in Helianthus annuss L. leaves which had been preconditioned in the dark or at a photon flux density (PFD) of 24 mol · m–2 · s–1 either in 21 or 0% O2. An initial light-dependent O2 outburst of 6 mol · m–2 was measured after aerobic dark incubation. It was attributed to the reduction of electron carriers, predominantly plastoquinone. The maximum initial rate of O2 evolution at PFD 8000 mol · m–2 · s–1 was 170 mol · m–2 · s–2 or about four times the steady CO2-and light-saturated rate of photosynthesis. Fluorescence measurements showed that the rate was still acceptor-limited. Fast O2 evolution ceased after electron carriers were reduced in the dark-adapted leaf, but continued for a short time at the lower rate of 62 mol · m–2 · s–1 in the light-adapted leaf. The data are interpreted to show that enzymes involved in 3-phosphoglycerate reduction are dark-inhibited, but were fully active in low light. In a dark-adapted leaf, respiratory CO2 evolution continued under nitrogen; it was partially inhibited by illumination. Prolonged exposure of a leaf to anaerobic conditions caused reducing equivalents to accumulate. This was shown by a slowly increasing chlorophyll fluorescence yield which indicated the reduction of the PSII acceptor QA in the dark. When the leaf was illuminated, no O2 evolution was detected from short light pulses, although transient O2 production was appreciable during longer light pulses. This indicates that an electron donor (pool size about 2–3 e/PSII reaction center) became reduced in the dark and the first photons were used to oxidise this donor instead of water.Abbreviations Chl chlorophyll - CRC carbon reduction cycle - GAPDH NADP-glyceraldehyde-phosphate dehydrogenase - PFD photon flux density - PGA 3-phosphoglycerate - RuBP ribulose bisphosphate - TCA tricarboxylic acid cycle To whom correspondence should be addressedThis work received support by the Estonian Academy of Sciences, the Gottfried-Wilhelm-Leibniz Program of the Deutsche For-schungsgemeinschaft and the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

13.
Rhodopseudomonas acidophila strain 7050 can satisfy all its nitrogen and carbon requirements from l-alanine. Addition of 100 M methionine sulfoximine to alanine grown cultures had no effect on growth rate indicating that deamination of alanine via alanine dehydrogenase and re-assimilation of the released NH 4 + by glutamine synthetase/glutamate synthase was an insignificant route of nitrogen transfer in this bacterium. Determination of aminotransferase activities in cell-free extracts failed to demonstrate the presence of direct routes from alanine to either aspartate or glutamate. The only active aminotransferase involving l-alanine was the alanine-glyoxylate enzyme (114–167 nmol·min–1·mg–1 protein) which produced glycine as end-product. The amino group of glycine was further transaminated to yield aspartate via a glycineoxaloacetate aminotransferase (117–136 nmol·min–1 ·mg–1 protein). No activity was observed when 2-oxoglutarate was substituted for oxaloacetate. The formation of glutamate from aspartate was catalysed by aspartate-2-oxoglutarate aminotransferase (85–107 nmol·min–1·mg–1 protein). Determinations of free intracellular amino acid pools in alanine and alanine+100 M methionine sulfoximine grown cells showed the predominance of glutamate, glycine and aspartate, providing further evidence that in alanine grown cultures R. acidophila satisfies its nitrogen requirements for balanced growth by transamination.Abbreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulfoximine - GOT glutamate-oxaloacetate aminotransferase - GPT glutamate-pyruvate amino-transferase - AGAT alanine-glyoxylate aminotransferase - GOAT glycine-oxaloacetate aminotransferase - GOTAT glycine-2-oxoglutarate aminotransferase - AOAT alanine-oxaloacetate aminotransferase  相似文献   

14.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

15.
Leaves of Populus balsamifera grown under full natural sunlight were treated with 0, 1, or 2 l SO2·1-1 air under one of four different photon flux densities (PFD). When the SO2 exposures took place in darkness or at 300 mol photons·m-2·s-1, sulfate accumulated to the levels predicted by measurements of stomatal conductance during SO2 exposure. Under conditions of higher PFD (750 and 1550 mol·m-2·s-1), however, the predicted levels of accumulated sulfate were substantially higher than those obtained from anion chromatography of the leaf extracts. Light-and CO2-saturated capacity as well as the photon yield of photosynthetic O2 evolution were reduced with increasing concentration of SO2. At 2 l SO2·1-1 air, the greatest reductions in both photosynthetic, capacity and photon yield occurred when the leaves were exposed to SO2 in the dark, and increasingly smaller reductions in each occurred with increasing PFD during SO2 exposure. This indicates that the inhibition of photosynthesis resulting from SO2 exposure was reduced when the exposure occurred under conditions of higher light. The ratio F v/F M (variable/maximum fluorescence emission) for photosyntem II (PSII), a measure of the photochemical efficiency of PSII, remained unaffected by exposure of leaves to SO2 in the dark and exhibited only moderate reductions with increasing PFD during the exposure, indicating that PSII was not a primary site of damage by SO2. Pretreatment of leaves with SO2 in the dark, however, increased the susceptibility of PSII to photoinhibition, as such pretreated leaves exhibited much greater reductions inF V/F M when transferred to moderate or high light in air than comparable control leaves.Abbreviations and symbols A1200 photosynthetic capacity (CO2-saturated rate of O2 evolution at 1200 mol photons·m-2·s-1) - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - FV variable fluorescence emission - PFD photon flux density (400–700 nm) - PSII photosystem II  相似文献   

16.
Summary A mutant strain of Anabaena variabilis, strain SA-1 that supported growth of wheat plants in a hydroponic co-culture in nitrogen (N) free medium also produced enough oxygen (O2) to support root respiration. The steady-state concentration of net O2 in the co-culture was dependent on incident light intensity. At an incident photosynthetic photoflux (PPF) of 1000 mol photons·m–2·s–1, net O2 evolution by the co-culture in the root zone reached a maximum value of about 220 mol O2 evolved·h–1·mg chlorophyll (Chl)–1. The O2 concentration in the rhizosphere of the co-culture stayed above the ambient air level. O2 uptake in the dark by strain SA-1-supplemented wheat roots washed free of cyanobacterium was higher than the root respiration of nitrate-grown plants. Nitrate-grown plants required aeration for maximum growth while the wheat-cyanobacterial co-culture can be cultured without aeration. These results show that O2 produced by strain SA-1 can be used to supply the O2 needs for root respiration of wheat. Respiration reduced net O2 evolution by the mutant SA-1, decreasing the partial pressure of O2 at the sites of cyanobacterial attachment to the roots. This led to an increase in the specific activity of nitrogenase of the co-culture at the high light intensities used to support wheat growth. This activity of about 30 mol ethylene produced·mg Chl–1·h–1 was three-fold higher than the activities obtained with the free-living strain SA-1 assayed at the same light intensity. In the co-culture, ammonia produced by the mutant strain SA-1 was not detectable. The NH inf4 sup+ produced by strain SA-1 was used by the wheat plants and, under these conditions, the total N content of the plants reached as high as 85% of the total N content of nitrate-grown plants. In the co-culture system the metabolism of wheat and the cyanobacterium complemented each other, leading to higher plant growth in N-free medium. Offprint requests to: M. Gunasekaran  相似文献   

17.
Production of hydrogen peroxide has been found in Ulva rigida (Chlorophyta). The formation of H2O2 was light dependent with a production of 1.2 mol·g FW–1·h–1 in sea water (pH 8.2) at an irradiance of 700 mol photons m–2·s–1. The excretion was also pH dependent: in pH 6.5 the production was not detectable (< 5 nmol·g FW–1·h–1) but at pH 9.0 the production was 5.0 mol·g FW–1·h–1. The production of H2O2 was totally inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). The ability of U. rigida growing in tanks (7501) under a natural light regime to excrete H2O2 was checked and found to be seven times higher at 08.00 hours than other times of the day. The H2O2 concentration in the cultivation tank (density: 2 g FW·l–1) reached the highest value (3 M) at 11.00 hours. Photosynthesis was not influenced by H2O2 formation. The H2O2 is suggested to come from the Mehler reaction (pseudocyclic photophosphorylation). With an oxygen evolution of 120 mmol·g FW–1·h–1 at pH 8.2 and 90 mmol·g FW–1·h–1 at pH 9.0, 0.5% and 2.7% of the electrons were used for extracellular H2O2 production. The H2O2 production is sufficiently high to be of physiological and ecological significance, and is suggested to be a part of the defence against epi and endophytes.Abbreviations ACL artificial, continuous light - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - GNL greenhouse - LDC Luminol-dependent chemiluminescence - SOD Superoxide dismutase This investigation was supported by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Hierta-Retzius Foundation, Marianne and Marcus Wallenberg Foundation, the Swedish Environmental Protection Board, and CICYT Spain.  相似文献   

18.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

19.
Compartmentation and flux characteristics of ammonium in spruce   总被引:1,自引:0,他引:1  
Using 13NH 4 + as a tracer, compartmental analyses for NH 4 + were performed in non-mycorrhizal roots of intact Picea glauca (Moench) Voss. seedlings at four different concentration regimes of external NH 4 + ([NH 4 + ]o), i.e. 0, 10, 100, and 1500 M. Three kinetically distinct compartments were identified, with half-lives of exchange of approximately 2 s, 30 s, and 14 min, assumed to represent surface adsorption, Donnan free space, and cytoplasm, respectively. No significant differences were found in half-lives of exchange with changes in [NH 4 + ]o. Influx was calculated to be 0.96 mol·g–1·h–1 in N-deprived plants (measured at 10 M [NH 4 + ]o), while under steady-state conditions it was 0.21 mol·g–1h–1 at 10 M [NH 4 + ]o, 1.96 mol·g–1–1 at 100 M [NH 4 + ]o, and 6.45 mol·g–1·h–1 at 1.5 mM [NH 4 + ]o. Efflux measured over the same range constituted approximately 9% of influx in N-deprived plants, 10% at 10 M, 28% at 100 M, and 35% at 1.5 mM [NH 4 + ]o. Cytoplasmic [NH 4 + ] was estimated at 6 m M in N-deprived plants, 2 mM at 10 M [NH 4 + ]o, 14 mM at 100 M, and 33 mM at 1.5 mM. Free-space [NH 4 + ] was 84 M, 50 M, 700 M, and 8 mM, respectively. In comparison with previously published data on fluxes and compartmentation of NO 3 in white-spruce seedlings, results of this study identify a pronounced physiological preference of this species for NH 4 + over NO 3 as an inorganic N source in terms of uptake and intracellular accumulation. The significant ecological importance of this N-source preference is discussed.The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. P. Poon for essential assistance in experiments.  相似文献   

20.
In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine residue, Ser 521 in tobacco, and interaction with divalent cations or polyamines, and 14-3-3 proteins. The physiological importance of the post-translational NR modulation is presently under investigation using a transgenic N. plumbaginifolia line. This line expresses a mutated tobacco NR where Ser 521 has been changed into aspartic acid (Asp) by site-directed mutagenesis, resulting in a permanently active NR enzyme [C. Lillo et al. (2003) Plant J 35:566–573]. When cut leaves or roots of this line (S521) were placed in darkness in a buffer containing 50 mM KNO3, nitrite was excreted from the tissue at rates of 0.08–0.2 mol (g FW)–1 h–1 for at least 5 h. For the control transgenic plant (C1), which had the regulatory serine of NR intact, nitrite excretion was low and halted completely after 1–3 h. Without nitrate in the buffer in which the tissue was immersed, nitrite excretion was also low for S521, although 20–40 mol (g FW)–1 nitrate was present inside the tissue. Apparently, stored nitrate was not readily available for reduction in darkness. Leaf tissue and root segments of S521 also emitted much more nitric oxide (NO) than the control. Importantly, NO emission from leaf tissue of S521 was higher in the dark than in the light, opposite to what was usually observed when post-translational NR modulation was operating.Abbreviations NR Nitrate reductase - NO Nitric oxide - Ser Serine - WT Wild type  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号