首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently constructed a physical map of the Streptomyces griseus 2247 genome using the restriction enzymes AseI and DraI, which revealed that this strain carries a 7.8 Mb linear chromosome. Based on this map, precise macrorestriction fragment and cosmid maps were constructed for both ends of the chromosome, which localized the afsA gene 150 Kb from the left end. Two afsA mutants were found to have suffered chromosomal deletions that removed the afsA locus. The sizes of the deletions were 20 and 130 Kb at the right end and 180 and 350 kb at the left end, respectively. Hybridization experiments using cosmids carrying a deletion endpoint indicated that the ends of the chromosome in the mutants were fused to form a circular chromosome. Received: 29 July 1996 / Accepted: 27 August 1996  相似文献   

2.
Summary The complete restriction map of DNA (61.57 Kb) of temperate Rhizobium meliloti phage 16-3 has been constructed for enzymes BglII, HindIII, HpaI, KpnI, and a partial map for EcoRI. The strategy employed for mapping included the analysis of double, triple, and partial digests; comparison of wild type and deletion mutants; and detailed analysis of subfragments, exploiting the presence of cohesive ends of the phage. Comparison of the genetic and physical maps indicates that one arm of the chromosome is genetically silent and/or contains nonessential genes.  相似文献   

3.
4.
Analysis of bacteriophage T7 early RNAs and proteins on slab gels   总被引:395,自引:0,他引:395  
The RNAs and proteins specified by five early genes of bacteriophage T7 have been identified by electrophoresis on sodium dodecyl sulfate, polyacrylamide gels. Extracts of cells infected by different deletion strains and point mutants of T7 are analyzed on a slab gel system in which 25 samples can be run simultaneously and then dried for autoradiography. The high capacity of this system makes it possible to do many types of experiment that would be extremely tedious by other means.The five early genes are designated 0.3,0.7, 1, 1.1 and 1.3, in order from left to right on the T7 genetic map. The stop signal that prevents host RNA polymerase from transcribing into the late region of T7 DNA is located to the right of gene 1.3 (ligase). Most deletions that affect gene 1.3 also delete the stop signal, and some of them affect at least one late protein, the 1.7 protein. Several small, early RNAs can be resolved that are not affected by any of the deletions. These small RNAs could not come from between the five early genes or from the right end of the early region, and other work (Dunn &; Studier, 1973) indicates that at least some of them come from the region to the left of gene 0.3.Deletions have been found that enter either end of the gene 1 RNA or the right ends of the 0.3 or 1.1 RNAs without seeming to affect the proteins specified by these RNAs. Perhaps all of the early messenger RNAs of T7 have untranslated regions at both ends. Some deletions that enter the left end of the gene 1 RNA reduce the amount of gene 1 protein that is synthesized, presumably by interfering with initiation of protein synthesis.  相似文献   

5.
No plasmid was detected in Xanthomonas campestris pv. campestris 17, a strain of the causative agent of black rot in cruciferous plants isolated in Taiwan. Its chromosome was cut by PacI, PmeI, and SwaI into five, two, and six fragments, respectively, and a size of 4.8 Mb was estimated by summing the fragment lengths in these digests. Based on the data obtained from partial digestion and Southern hybridization using probes common to pairs of the overlapping fragments or prepared from linking fragments, a circular physical map bearing the PacI, PmeI, and SwaI sites was constructed for the X. campestris pv. campestris 17 chromosome. Locations of eight eps loci involved in exopolysaccharide (xanthan gum) synthesis, two rrn operons each possessing an unique I-CeuI site, one pig cluster required for yellow pigmentation, and nine auxotrophic markers were determined, using mutants isolated by mutagenesis with Tn5(pfm)CmKm. This transposon contains a polylinker with sites for several rare-cutting restriction endonucleases located between the chloramphenicol resistance and kanamycin resistance (Kmr) genes, which upon insertion introduced additional sites into the chromosome. The recA and tdh genes, with known sequences, were mapped by tagging with the polylinker-Kmr segment from Tn5(pfm)CmKm. This is the first map for X. campestris and would be useful for genetic studies of this and related Xanthomonas species.  相似文献   

6.
We describe the isolation and sequencing of the hip gene of Escherichia coli and show that it encodes the β subunit of integration host factor (IHFβ). In order to locate the coding region, we constructed a set of deletion mutants by exonucleolytic digestion of a fragment containing hip, determined which mutants were hip+ and which hip? by complementation, and then sequenced the ends of the critical deletions. The 5′ end of the coding region was located precisely by comparing the deduced amino acid sequence to the actual N-terminal amino acid sequence of IHF. Our assignment of the coding region was further substantiated by the nucleotide sequences of a hip point mutant and of internal replacement mutations. We found a probable promoter for hip located about 85 base-pairs upstream from the initial AUG codon and about 75 base-pairs downstream from the 3′ end of the neighboring gene. rpsA, and we constructed an IHFβ overproducer by fusing the coding sequences to the λpL promoter. A survey of known protein sequences revealed a close relationship between IHFβ and the type II prokaryotic DNA binding proteins (the “histone-like” proteins). This relationship is shared to a considerable extent by the other subunit of IHF, IHFα. A hip missense mutation that replaces a completely conserved glycine with aspartate has a null phenotype, suggesting that the conserved regions are functionally important.  相似文献   

7.
Deleted genomes of simian virus 40 have been constructed by enzymatic excision of specific segments of DNA from the genome of wild-type SV402. For this purpose, a restriction endonuclease from Hemophilus influenzae (endo R · HindIII) was used. This enzyme cleaves SV40 DNA into six fragments, which have cohesive termini. Partial digest products were separated by electrophoresis in agarose gel and subsequently cloned by plaque formation in the presence of complementing temperature-sensitive mutants of SV40. Individual deletion mutants generated in this way were mapped by analysis of DNA fragments produced by endo R · Hind digestion of their deleted genomes, and by heteroduplex mapping. Two types of deletions were found: (1) “excisional” deletions, in which the limits of the deleted segment corresponded to HindIII cleavage sites, and (2) “extended” deletions, in which the deleted segment extended beyond HindIII cleavage sites. Excisionally deleted genomes presumably arose by cyclization of a linear fragment via cohesive termini generated by endo R · HindIII whereas genomes with extended deletions probably were generated by intramolecular recombination near the ends of linear fragments. Of the nine mutants analyzed, two had deletions in the “early” region of the SV40 genome, six had deletions in the “late” region, and one had a deletion that spanned both regions.  相似文献   

8.
Genetic and physical mapping in the early region of bacteriophage T7 DNA.   总被引:14,自引:0,他引:14  
A detailed physical map of the early region of bacteriophage T7 DNA has been constructed. This map contains: locations for all the cuts made by the restriction endonucleases HindII, HpaII, HaeIII and HaeII, and many of the cuts by HhaI; the approximate end points for each of 61 different deletions; initiation sites and the termination site for RNAs made by Escherichia coli RNA polymerase; an initiation site for RNA made by T7 RNA polymerase; the five primary RNase III cleavage sites of the early region; and the coding sequences for perhaps nine different early proteins. Virtually all of the non-overlapping coding capacity of the five early messenger RNAs is used, except for untranslated stretches of perhaps 30 or so nucleotides at the ends. It seems likely that each of the nine early proteins is made from its own ribosome-binding and initiation site. The mapped restriction cuts provide fixed reference points, and allow DNA fragments containing specific genetic signals to be identified and isolated.The nucleotide sequences around the ends of three different T7 deletions have been determined. Each deletion eliminated a segment of DNA between repeated sequences of seven, eight or ten base-pairs, located 578 to 2100 base-pairs apart in the wild-type sequence. In each case, one copy of the repeated sequence was retained in the deletion mutant. This is consistent with the deletions having arisen by a genetic crossover between the repeated sequences. The approximate frequency of genetic recombination per base-pair has been estimated within two early genes; in both cases, the value was close to 0.01% recombination per base-pair, consistent with the value expected from the total length of the T7 genetic map. Genetic recombination between non-overlapping deletions appears to be severely depressed when the distance between the deletions is closer than about 40 to 50 base-pairs, but recombination between a point mutation and a deletion does not appear to be similarly depressed. This suggests that efficient genetic recombination in T7 may require a base-paired “synapse” of some minimum size between the recombining DNA molecules.  相似文献   

9.
R E Wolf  Jr  J A Cool 《Journal of bacteriology》1980,141(3):1222-1229
A genetic map was prepared for gnd, the gene of Escherichia coli which encodes the metabolically regulated 6-phosphogluconate dehydrogenase. Direct selection methods were used for the isolation of mutants with deletions that define the respective ends of gnd. These selections depended on the availability of a defective lysogen in which gnd was present on a lambda h80 dgnd his prophage located at the att phi 80 region of the chromosome. Mutants with deletions entering gnd from the his-distal end were selected as Gnd- TonB- mutants. Mutants with his-proximal gnd deletions were selected as Gnd-, temperature-resistant mutants of a specially prepared stable lysogen. Gnd- mutants were also isolated after mutagenesis with bacteriophage Mu cts61, and genetic tests were used to determine which mutants carry a Mu cts61 prophage in gnd. The deletion mutations were mapped against each other and against the insertion mutations through the use of F' merodiploid strains. The insertion mutations mapped at seven distinct sites in gnd; three mapped under the deletions defining the his-proximal portion of the gene and three mapped with the his-distal deletions.  相似文献   

10.
The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability in cancer cells that lack cell cycle checkpoints. We have previously reported that I-SceI endonuclease-induced DSBs near telomeres in a human cancer cell line are much more likely to generate large deletions and gross chromosome rearrangements (GCRs) than interstitial DSBs, but found no difference in the frequency of I-SceI-induced small deletions at interstitial and subtelomeric DSBs. We now show that inhibition of MRE11 3′–5′ exonuclease activity with Mirin reduces the frequency of large deletions and GCRs at both interstitial and subtelomeric DSBs, but has little effect on the frequency of small deletions. We conclude that large deletions and GCRs are due to excessive processing of DSBs, while most small deletions occur during classical nonhomologous end joining (C-NHEJ). The sensitivity of subtelomeric regions to DSBs is therefore because they are prone to undergo excessive processing, and not because of a deficiency in C-NHEJ in subtelomeric regions.  相似文献   

11.
A functional map of the replicator region of the octopine Ti plasmid   总被引:14,自引:0,他引:14  
A hybrid plasmid of pUB 110 (Neor) and pAB 124 (Tcr) has been constructed and shown to have a NeosTcr phenotype in Bacillus subtilis. A derivative of this pUB 110:pAB 124 hybrid has been isolated, pAB 324, which has the expected NeorTcr phenotype. A restriction endonuclease cleavage map of pAB 324 was compared to that of the parent hybrid. This showed that pAB 324 contained a minimum of two deletions and one insertion. This insertion (approximately 1.0 Md) has been identified as originating from the Bacillus subtilis chromosome.  相似文献   

12.
The prophages of the related temperate bacteriophages P1 and P7, which normally exist as plasmids, suppress Escherichia coli dnaA (ts) mutants by integrating into the host chromosome. The locations of the sites on the prophage used for integrative recombination were identified by restriction nuclease analysis and DNA-DNA hybridization techniques. The integration of P1 and P7 often involves a specific site on the host DNA and a specific site on the phage DNA; the latter is probably the end of the phage genetic map. When this site is utilized, the host Rec+ function is not required. In Rec+ strains, P1 and P7 may also recombine with homologous regions on the host chromosome; at least one of these regions is an IS1 element. In some integration events, prophage deletions are observed which are often associated with inverted repeat structures on the phage DNA. Thus, P1 and P7 may employ one of several different mechanisms for integration.  相似文献   

13.
Intragenic Deletions and Salivary Band Relationships in Drosophila   总被引:10,自引:8,他引:2       下载免费PDF全文
In the absence of assumptions pertaining to the organization and function of chromomeric DNA, the cytogenetic analysis of intragenic deletions that start at Notch and spread to the right or left of the locus suggests that the recombinational gene is bilaterally associated with salivary band 3C7. Either there are two genes resolved as a single cistron, or one must seek an alternative interpretation that allows some modicum of independent in the relationship between gene and band. Although we momentarily lean toward the hypothesis that gene and salivary band are separate entities on a binemic chromosome, alternative views can be devised, and the data must remain open to reinterpretation.—The recessive visible allele faswb behaves as a point mutant at the left end of the map and seems to be a deletion in the interval 3C6 to 7; we suspect some part of the band is missing. We have used the aberration in faswb as a cytological marker, isolated intragenic recombinants, and subjected them to examination. The analysis indicates that the chromosomal interchanges occurred to the right of 3C7.  相似文献   

14.
The restriction endonuclease from Haemophilus parainfluenzae, endoR·HpaI cleaves λcI857s7 DNA into 14 fragments. The sizes of these fragments were determined and a physical map was constructed. The ordering of the fragments was carried out using different deletion and substitution mutants of λ phage, double cleavages with another restriction enzyme, endoR·BamHI, and partial protection of individual HpaI recognition sites by the antibiotics distamycin A and actinomycin D. HpaI produces fragments from the left arm of the λ DNA genome, which may help in investigating the structure and function of this part of the phage.  相似文献   

15.
Genetic instability in Streptomyces species often involves large deletions sometimes accompanied by DNA amplification. Two such systems in Streptomyces lividans 66 involve the production of mutants sensitive to chloramphenicol and the production of mutants resistant to the galactose analogue 2-deoxygalactose, respectively. Overlapping cosmids were isolated that span the ca. 1 Mb region between the two amplifiable regions. The structure of the region was confirmed by restriction mapping using the rarely cutting enzymes AseI, BfrI and DraI and pulsed-field gel electrophoresis. The region contains a non-clonable gap flanked by inverted repeats; the structure is consistent with the presence of a physical gap, i.e. a linear chromosome.  相似文献   

16.
A filamentous soil bacterium, Streptomyces griseus 2247, carries a 7. 8-Mb linear chromosome. We previously showed by macrorestriction analysis that mutagenic treatments easily caused deletions at both ends of its linear chromosome and changed the chromosome to a circular form. In this study, we confirmed chromosomal circularization by cloning and sequencing the junction fragments from two deletion mutants, 404-23 and N2. The junction sequences were compared with the corresponding right and left deletion end sequences in the parent strain, 2247. No homology and a 6-bp microhomology were found between the two deletion ends of the 404-23 and N2 mutants, respectively, which indicate that the chromosomal circularization was caused by illegitimate recombination without concomitant amplification. The circularized chromosomes were stably maintained in both mutants. Therefore, the chromosomal circularization might have occurred to prevent lethal deletions, which otherwise would progress into the indispensable central regions of the chromosome.  相似文献   

17.
Five viable deletion mutants of simian virus 40 (SV40) were prepared and characterized. These mutants lack 15 to 60 base pairs between map positions 0.198 and 0.218, near the 3′ end of the early region of SV40 and extend further into the body of the A gene, encoding the large T antigen, than previously described deletion mutants. These mutants were isolated after transfection of monkey kidney CV-1p cells with full-sized linear DNA prepared by partial digestion of form I SV40 DNA with restriction endonucleases HinfI or MboII, followed by removal of approximately 25 base pairs of DNA from the 5′ termini using λ-5′-exonuclease and purification of the DNA in agarose gels. Based on camparisons of the DNA sequence of SV40 and polyoma virus, these mutations map in the 19% of the SV40 A gene that shares no homology with the A gene of polyoma virus. The mutations exist in two different genetic backgrounds: the original set of mutants (dl2401 through dl2405) was prepared, using as a parent SV40 mutant dl862, which has a deletion at the single HpaII site (0.725 map unit). A second set (dl2491 through dl2495) contains the same deletions in a wild-type SV40 (strain SV-S) background. Relative to wild-type SV40, the original mutants showed reduced rates of growth, lower yields of progeny virus and viral DNA, and smaller plaque size; in these properties the mutants resembled parental dl862, although mutant progeny yields were usually lower than yields of dl862, suggesting a possible interaction between the two deletions. The second set of mutants had growth properties and progeny yields similar to those of wild-type SV40; however, Southern blotting experiments indicated that viral DNA replication proceeds at a slightly reduced rate. All of the mutants transformed mouse NIH/3T3 cells and mouse embryo fibroblasts at the same frequency as wild-type SV40. Mutants dl2402, dl2492, and dl2405 consistently produced denser and larger foci in both types of cells. All mutants directed the synthesis of shortened large T antigens. Adenovirus helper function was retained by all mutants.  相似文献   

18.
Besides the KU-dependent classical non-homologous end-joining (C-NHEJ) pathway, an alternative NHEJ pathway first identified in mammalian systems, which is often called the back-up NHEJ (B-NHEJ) pathway, was also found in plants. In mammalian systems PARP was found to be one of the essential components in B-NHEJ. Here we investigated whether PARP1 and PARP2 were also involved in B-NHEJ in Arabidopsis. To this end Arabidopsis parp1, parp2 and parp1parp2 (p1p2) mutants were isolated and functionally characterized. The p1p2 double mutant was crossed with the C-NHEJ ku80 mutant resulting in the parp1parp2ku80 (p1p2k80) triple mutant. As expected, because of their role in single strand break repair (SSBR) and base excision repair (BER), the p1p2 and p1p2k80 mutants were shown to be sensitive to treatment with the DNA damaging agent MMS. End-joining assays in cell-free leaf protein extracts of the different mutants using linear DNA substrates with different ends reflecting a variety of double strand breaks were performed. The results showed that compatible 5′-overhangs were accurately joined in all mutants, that KU80 protected the ends preventing the formation of large deletions and that PARP proteins were involved in microhomology mediated end joining (MMEJ), one of the characteristics of B-NHEJ.  相似文献   

19.
Lifschytz E 《Genetics》1978,88(3):457-467
Genetic organization at the base of the X chromosome was studied through the analysis of X-ray-induced deficiencies. Deficiencies were recovered so as to have a preselected right end "anchored" in the centric heterochromatin to the right of the su(f) locus. "Free" ends of deficiencies occurred at any of 22 intervals in Section 20 and in the proximal portion of Section 19 of Bridges' (1938) polytene chromosome map. The distribution of 130 such free ends of deficiencies induced in normal, In(1)sc 8, and In(1)wm4 chromosomes suggests that on the single section level, genes are flanked by "hot" or "cold" sites for X-ray-induced breaks, and that occurrence of the hot spots is dependent on their interaction with the fixed-end sites in the centric heterochromatin. In the light of these results, it is argued that long heterochromatic sequences separate the relatively few genes in Section 20, and thus endow it with several characteristics typical of heterochromatic regions. Section 20 is considered to be a transition region between the mostly heterochromatic and mostly euchromatic regions of the X chromosome; the differences between them are suggested as being merely quantitative.  相似文献   

20.
EcoRI analysis of bacteriophage P22 DNA packaging.   总被引:20,自引:0,他引:20  
Bacteriophage P22 linear DNA molecules are a set of circularly permuted sequences with ends located in a limited region of the physical map. This mature form of the viral chromosome is cut in headful lengths from a concatemeric precursor during DNA encapsulation. Packaging of P22 DNA begins at a specific site, which we have termed pac, and then proceeds sequentially to cut lengths of DNA slightly longer than one complete set of P22 genes (Tye et al., 1974b). The sites of DNA maturation events have been located on the physical map of EcoRI cleavage sites in P22 DNA. EcoRI digestion products of mature P22 wild-type DNA were compared with EcoRI fragments of two deletion and two insertion mutant DNAs. These mutations decrease or increase the length of the genome, but do not alter the DNA encapsulation mechanism. Thus the position of mature molecular ends relative to EcoRI restriction sites is different in each mutant, and comparison of the digests shows which fragments come from the ends of linear molecules. From the positions of the ends of molecules processed in sequential headfuls, the location of pac and the direction of encapsulation relative to the P22 map were deduced. The pac site lies in EcoRI fragment A, 4.1 × 103 base-pairs from EcoRI cleavage site 1. Sequential packaging of the concatemer is initiated at pac and proceeds in the counterclockwise direction relative to the circular map of P22. One-third of the linears in a population are cut from the concatemer at pac, and most packaging sequences do not extend beyond four headfuls.Fragment D is produced by EcoRI cleavage at a site near the end of a linear chromosome which has been encapsulated starting at pac. The position of the pac site is therefore defined by one end of fragment D. The pac site is not located near genes 12 and 18, the only known site for initiation of P22 DNA replication, but lies among late genes at a position on the physical gene map approximately analogous to the cohesive end site (cos) of bacteriophage λ at which λ DNA is cleaved during encapsulation. Our results suggest that P22 and λ DNA maturation mechanisms have many common properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号