首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Pharmacological blockade of cyclooxygenase-2 (COX-2) causes impairment of kidney development. The present study was aimed at determining temporal expression pattern and activity of the PGE(2) synthetic pathway during postnatal nephrogenesis in mice and its association to the time window sensitive to COX-2 inhibition. During the first 10 days after birth, we observed transient induction of mRNA and protein for microsomal PGE synthase (mPGES)-1 between postnatal days 4 (P4) and P8, but not for mPGES-2 or cytosolic PGE synthase (cPGES). PGE(2) synthetic activity using arachidonic acid and PGH(2) as substrates and also urinary excretion of PGE(2) were enhanced during this time frame. In parallel to the PGE(2) system, COX-2 but not COX-1 expression was also transiently induced. Studying glomerulogenesis in EP receptor knockout mice revealed a reduction in glomerular size in EP1(-/-), EP2(-/-), and EP4(-/-) mice, supporting the developmental role of PGE(2). The most vulnerable time window to COX-2 inhibition by SC-236 was found closely related to the temporal expression of COX-2 and mPGES-1. The strongest effects of COX-2 inhibition were achieved following 8 days of drug administration. Similar developmental damage was caused by application of rofecoxib, but not by the COX-1-selective inhibitor SC-560. COX-2 inhibition starting after P10 has had no effect on the size of glomeruli or on the relative number of superficial glomeruli; however, growth of the renal cortex was significantly diminished, indicating the requirement of COX-2 activity after P10. Effects of COX-2 inhibition on renal cell differentiation and on renal fibrosis needed a prolonged time of exposition of at least 10 days. In conclusion, temporal expression of the PGE(2) synthetic system coincides with the most vulnerable age interval for the induction of irreversible renal abnormalities. We assume that mPGES-1 is coregulated with COX-2 for PGE(2) synthesis to orchestrate postnatal kidney development and growth.  相似文献   

2.
3.
4.
Arachidonic acid is converted to prostaglandin E(2) (PGE(2)) by a sequential enzymatic reaction performed by two isoenzyme groups, cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin E synthases (cPGES, mPGES-1, and mPGES-2). mPGES-1 is widely considered to be the final enzyme regulating COX-2-dependent PGE(2) synthesis. These generalizations have been based in most part on experiments utilizing gene expression analyses of cell lines and tumor tissue. To assess the relevance of these generalizations to a native mammalian tissue, we used isolated human and rodent pancreatic islets to examine interleukin (IL)-1β-induced PGE(2) production, because PGE(2) has been shown to mediate IL-1β inhibition of islet function. Rat islets constitutively expressed mRNAs of COX-1, COX-2, cPGES, and mPGES-1. As expected, IL-1β increased mRNA levels for COX-2 and mPGES-1, but not for COX-1 or cPGES. Basal protein levels of COX-1, cPGES, and mPGES-2 were readily detected in whole cell extracts but were not regulated by IL-1β. IL-1β increased protein levels of COX-2, but unexpectedly mPGES-1 protein levels were low and unaffected. In microsomal extracts, mPGES-1 protein was barely detectable in rat islets but clearly present in human islets; however, in neither case did IL-1β increase mPGES-1 protein levels. To further assess the importance of mPGES-1 to IL-1β regulation of an islet physiologic response, glucose-stimulated insulin secretion was examined in isolated islets of WT and mPGES-1-deficient mice. IL-1β inhibited glucose-stimulated insulin secretion equally in both WT and mPGES-1(-/-) islets, indicating that COX-2, not mPGES-1, mediates IL-1β-induced PGE(2) production and subsequent inhibition of insulin secretion.  相似文献   

5.
A major immunological response during neuroinflammation is the activation of microglia, which subsequently release proinflammatory mediators such as prostaglandin E(2) (PGE(2)). Besides its proinflammatory properties, cyclooxygenase-2 (COX-2)-derived PGE(2) has been shown to exhibit anti-inflammatory effects on innate immune responses. Here, we investigated the role of microsomal PGE(2) synthase-1 (mPGES-1), which is functionally coupled to COX-2, in immune responses using a model of lipopolysaccharide (LPS)-induced spinal neuroinflammation. Interestingly, we found that activation of E-prostanoid (EP)2 and EP4 receptors, but not EP1, EP3, PGI(2) receptor (IP), thromboxane A(2) receptor (TP), PGD(2) receptor (DP), and PGF(2) receptor (FP), efficiently blocked LPS-induced tumor necrosis factor α (TNFα) synthesis and COX-2 and mPGES-1 induction as well as prostaglandin synthesis in spinal cultures. In vivo, spinal EP2 receptors were up-regulated in microglia in response to intrathecally injected LPS. Accordingly, LPS priming reduced spinal synthesis of TNFα, interleukin 1β (IL-1β), and prostaglandins in response to a second intrathecal LPS injection. Importantly, this reduction was only seen in wild-type but not in mPGES-1-deficient mice. Furthermore, intrathecal application of EP2 and EP4 agonists as well as genetic deletion of EP2 significantly reduced spinal TNFα and IL-1β synthesis in mPGES-1 knock-out mice after LPS priming. These data suggest that initial inflammation prepares the spinal cord for a negative feedback regulation by mPGES-1-derived PGE(2) followed by EP2 activation, which limits the synthesis of inflammatory mediators during chronic inflammation. Thus, our data suggest a role of mPGES-1-derived PGE(2) in resolution of neuroinflammation.  相似文献   

6.
7.
Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis   总被引:8,自引:0,他引:8  
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a stimulus-inducible enzyme that functions downstream of cyclooxygenase (COX)-2 in the PGE2-biosynthetic pathway. Given the accumulating evidence that COX-2-derived PGE2 participates in the development of various tumors, including colorectal cancer, we herein examined the potential involvement of mPGES-1 in tumorigenesis. Immunohistochemical analyses demonstrated the expression of both COX-2 and mPGES-1 in human colon cancer tissues. HCA-7, a human colorectal adenocarcinoma cell line that displays COX-2- and PGE2-dependent proliferation, expressed both COX-2 and mPGES-1 constitutively. Treatment of HCA-7 cells with an mPGES-1 inhibitor or antisense oligonucleotide attenuated, whereas overexpression of mPGES-1 accelerated, PGE2 production and cell proliferation. Moreover, cotransfection of COX-2 and mPGES-1 into HEK293 cells resulted in cellular transformation manifested by colony formation in soft agar culture and tumor formation when implanted subcutaneously into nude mice. cDNA array analyses revealed that this mPGES-1-directed cellular transformation was accompanied by changes in the expression of a variety of genes related to proliferation, morphology, adhesion, and the cell cycle. These results collectively suggest that aberrant expression of mPGES-1 in combination with COX-2 can contribute to tumorigenesis.  相似文献   

8.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

9.
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.  相似文献   

10.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible protein recently shown to be an important source of inflammatory PGE2. Here we have used mPGES-1 wild type, heterozygote, and null mice to assess the impact of reduction or absence mPGES-1 protein on the production of PGE2 and other prostaglandins in lipopolysaccharide (LPS)-treated macrophages and mice. Thioglycollate-elicited peritoneal macrophages with mPGES-1 deficiency were found to lose their ability to produce PGE2 upon LPS stimulation. Resident mPGES-1(-/-) peritoneal macrophages exhibited severely impaired PGE2-releasing activity but retained some LPS-inducible PGE2 production capacity. Both macrophage types showed a 50% decrease in PGE2 production with removal of one copy of the mPGES-1 gene. In vivo, mPGES-1 deletion abolished the LPS-stimulated production of PGE2 in spleen, kidney, and brain. Surprisingly, lack of mPGES-1 activity resulted in an 80-90% decrease in basal, cyclooxygenase-1 (COX-1)-dependent PGE2 production in stomach and spleen, and a 50% reduction in brain and kidney. Other prostaglandins (thromboxane B2, PGD2, PGF(2alpha), and 6-keto-PGF(1alpha)) were significantly elevated in stomachs of mPGES-1-null mice but not in other tissues. Examination of mRNA for several terminal prostaglandin synthases did not reveal changes in expression levels associated with mPGES-1 deficiency, indicating that gastric prostaglandin changes may be due to shunting of cyclooxygenase products to other terminal synthases. These data demonstrate for the first time a dual role for mPGES-1 in both inflammatory and COX-1-mediated PGE2 production and suggest an interdependence of prostanoid production with tissue-specific alterations of prostaglandin levels in the absence of mPGES-1.  相似文献   

11.
The products of arachidonic acid metabolism are key mediators of inflammatory responses in the central nervous system, and yet we do not know the mechanisms of their regulation. The phospholipase A(2) enzymes are sources of cellular arachidonic acid, and the enzymes cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) are essential for the synthesis of inflammatory PGE(2) in the brain. These studies seek to determine the function of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) in inflammatory PGE(2) production in the brain. We wondered whether cPLA(2)alpha functions in inflammation to produce arachidonic acid or to modulate levels of COX-2 or mPGES-1. We investigated these questions in the brains of wild-type mice and mice deficient in cPLA(2)alpha (cPLA(2)alpha(-/-)) after systemic administration of LPS. cPLA(2)alpha(-/-) mice had significantly less brain COX-2 mRNA and protein expression in response to LPS than wild-type mice. The reduction in COX-2 was most apparent in the cells of the cerebral blood vessels and the leptomeninges. The brain PGE(2) concentration of untreated cPLA(2)alpha(-/-) mice was equal to their wild-type littermates. After LPS treatment, however, the brain concentration of PGE(2) was significantly less in cPLA(2)alpha(-/-) than in cPLA(2)alpha(+/+) mice (24.4 +/- 3.8 vs. 49.3 +/- 11.6 ng/g). In contrast to COX-2, mPGES-1 RNA levels increased equally in both mouse genotypes, and mPGES-1 protein was unaltered 6 h after LPS. We conclude that cPLA(2)alpha regulates COX-2 levels and modulates inflammatory PGE(2) levels. These results indicate that cPLA(2)alpha inhibition is a novel anti-inflammatory strategy that modulates, but does not completely prevent, eicosanoid responses.  相似文献   

12.
13.
Prostaglandin E2 (PGE2) is a key mediator involved in several inflammatory conditions. In this study, we investigated the expression and regulation of the terminal PGE2 synthesizing enzyme prostaglandin E synthases (mPGES-1, mPGES-2 and cPGES) in gingival fibroblasts stimulated with pro-inflammatory cytokines. We used siRNA knockdown of mPGES-1 to elucidate the impact of mPGES-1 inhibition on mPGES-2 and cPGES expression, as well as on PGE2 production. The cytokines TNFalpha and IL-1beta increased protein expression and activity of mPGES-1, accompanied by increased COX-2 expression and PGE2 production. The isoenzymes mPGES-2 and cPGES, constitutively expressed at mRNA and protein levels, were unaffected by the pro-inflammatory cytokines. We show for the first time that treatment with mPGES-1 siRNA down-regulated the cytokine-induced mPGES-1 protein expression and activity. Interestingly, mPGES-1 siRNA did not affect the cytokine-stimulated PGE2 production, whereas PGF(2alpha) levels were enhanced. Neither mPGES-2 nor cPGES expression was affected by siRNA silencing of mPGES-1. Dexamethasone and MK-886 both inhibited the cytokine-induced mPGES-1 expression while mPGES-2 and cPGES expression remained unaffected. In conclusion, mPGES-1 siRNA down-regulates mPGES-1 expression, and neither mPGES-2 nor cPGES substituted for mPGES-1 in a knockdown setting in gingival fibroblasts. Moreover, mPGES-1 siRNA did not affect PGE2 levels, whereas PGF(2alpha) increased, suggesting a compensatory pathway of PGE2 synthesis when mPGES-1 is knocked down.  相似文献   

14.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

15.
16.
Cyclooxygenase-2 (COX-2)-dependent prostaglandin (PG) E(2) synthesis in the spinal cord plays a major role in the development of inflammatory hyperalgesia and allodynia. Microsomal PGE(2) synthase-1 (mPGES-1) isomerizes COX-2-derived PGH(2) to PGE(2). Here, we evaluated the effect of mPGES-1-deficiency on the nociceptive behavior in various models of nociception that depend on PGE(2) synthesis. Surprisingly, in the COX-2-dependent zymosan-evoked hyperalgesia model, the nociceptive behavior was not reduced in mPGES-1-deficient mice despite a marked decrease of the spinal PGE(2) synthesis. Similarly, the nociceptive behavior was unaltered in mPGES-1-deficient mice in the formalin test. Importantly, spinal cords and primary spinal cord cells derived from mPGES-1-deficient mice showed a redirection of the PGE(2) synthesis to PGD(2), PGF(2alpha) and 6-keto-PGF(1alpha) (stable metabolite of PGI(2)). Since the latter prostaglandins serve also as mediators of nociception they may compensate the loss of PGE(2) synthesis in mPGES-1-deficient mice.  相似文献   

17.
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production.  相似文献   

18.
19.
Using human blood monocytes (for determination of cyclooxygenase-2 (COX-2) mRNA by RT-PCR) and human whole blood (for prostanoid determination), the present study investigates the influence of the second messenger cAMP on lipopolysaccharide (LPS)-induced COX-2 expression with particular emphasis on the role of prostaglandin E(2) (PGE(2)) in this process. Elevation of intracellular cAMP with a cell-permeable cAMP analogue (dibutyryl cAMP), an adenylyl cyclase activator (cholera toxin), or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine) substantially enhanced LPS-induced PGE(2) formation and COX-2 mRNA expression, but did not modify COX-2 enzyme activity. Moreover, up-regulation of LPS-induced COX-2 expression was caused by PGE(2), butaprost (selective agonist of the adenylyl cyclase-coupled EP(2) receptor) and 11-deoxy PGE(1) (EP(2)/EP(4) agonist), whereas sulprostone (EP(3)/EP(1) agonist) left COX-2 expression unaltered. Abrogation of LPS-induced PGE(2) synthesis with the selective COX-2 inhibitor NS-398 caused a decrease in COX-2 mRNA levels that was restored by exogenous PGE(2) and mimicked by S(+)-flurbiprofen and ketoprofen. Overall, these results indicate a modulatory role of cAMP in the regulation of COX-2 expression. PGE(2), a cAMP-elevating final product of the COX-2 pathway, may autoregulate COX-2 expression in human monocytes via a positive feedback mechanism.  相似文献   

20.
We have recently reported that cyclooxygenase (COX)-2-deficiency affects brain upstream and downstream enzymes in the arachidonic acid (AA) metabolic pathway to prostaglandin E2 (PGE2), as well as enzyme activity, protein and mRNA levels of the reciprocal isozyme, COX-1. To gain a better insight into the specific roles of COX isoforms and characterize the interactions between upstream and downstream enzymes in brain AA cascade, we examined the expression and activity of COX-2 and phospholipase A2 enzymes (cPLA2 and sPLA2), as well as the expression of terminal prostaglandin E synthases (cPGES, mPGES-1, and - 2) in wild type and COX-1(-/-) mice. We found that brain PGE2 concentration was significantly increased, whereas thromboxane B2 (TXB2) concentration was decreased in COX-1(-/-) mice. There was a compensatory up-regulation of COX-2, accompanied by the activation of the NF-kappaB pathway, and also an increase in the upstream cPLA2 and sPLA2 enzymes. The mechanism of NF-kappaB activation in the COX-1(-/-) mice involved the up-regulation of protein expression of the p50 and p65 subunits of NF-kappaB, as well as the increased protein levels of phosphorylated IkappaBalpha and of phosphorylated IKKalpha/beta. Overall, our data suggest that COX-1 and COX-2 play a distinct role in brain PG biosynthesis, with basal PGE2 production being metabolically coupled with COX-2 and TXB2 production being preferentially linked to COX-1. Additionally, COX-1 deficiency can affect the expression of reciprocal and coupled enzymes, COX-2, Ca2+ -dependent PLA2, and terminal mPGES-2, to overcome defects in brain AA cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号