首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
谷胱甘肽S-转移酶(Glutathione S-transferase,GST)在帮助植物抵抗各种胁迫中发挥重要作用。该研究从江南卷柏Selaginella moellendorffii中克隆到两个Phi类GST基因,分别命名为Sm GSTF1和Sm GSTF2,两个基因均编码215个氨基酸残基的蛋白质。表达模式分析发现,这两个基因在江南卷柏根、茎和叶中均有表达。将这两个基因在大肠杆菌中诱导表达重组蛋白并纯化,酶学性质分析表明Sm GSTF1和Sm GSTF2对CDNB、NBD-Cl和NBC等3种底物都有活性。Sm GSTF1对Fluorodifen和Cum-OOH也有活性,而Sm GSTF2对它们没有活性。酶动力学分析表明Sm GSTF1和Sm GSTF2对GSH有较高的亲和力,而对CDNB的亲和力都相对较低。在不同p H及温度条件下对Sm GSTF1和Sm GSTF2重组蛋白进行活性测定,发现这两个蛋白在p H 7-8.5,45-55℃温度范围内有较高的催化活性。研究推测,Sm GSTF1和Sm GSTF2可能在江南卷柏的抗逆生理过程中有重要的作用。  相似文献   

2.
1. Phenol compounds (ellagic acid, quercetin and purpurogallin), glutathione analogues (S-hexylglutathione and S-octylglutathione) and a diuretic drug (ethacrynic acid) were compared for their inhibitory effects on glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) in the canine erythrocytes. 2. All these compounds inhibited GST activity; quercetin was found to be the most potent inhibitor. 3. Ellagic acid, purpurogallin, quercetin and ethacrynic acid inhibited GR activity; S-hexylglutathione and S-octylglutathione had no effect on GR and GSH-Px activities. 4. Quercetin and purpurogallin inhibited GST non-competitively toward glutathione, whereas ellagic acid showed a competitive inhibition. Ellagic acid and purpurogallin inhibited GR non-competitively toward oxidized glutathione.  相似文献   

3.
A high Cd-tolerant dark septate endophyte (DSE), Exophiala pisciphila, was inoculated into maize (Zea mays L.) roots under Cd stress. The Cd content, enzymes activity and thiol compound content relevant to glutathione (GSH) metabolism in maize leaves were analyzed. The Cd content in maize shoots increased with increasing Cd stress, but the DSE significantly reduced the Cd content at the 40?mg/kg Cd treatment. Cd stress increased the enzyme activity of glutathione reductase (GR), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) as well as the thiol compound contents of sulfur, thiols (-SH) and oxidized glutathione (GSSG). The content of reduced GSH and the GSH/GSSG ratio reached a peak at the 5?mg/kg Cd treatment but then decreased with increasing Cd stress. Furthermore, the DSE significantly enhanced the GR and GSH-Px activity and increased the contents of -SH and GSH under low Cd stress (5 and 10?mg/kg), but decreased the γ-glutamylcysteine synthetase and GST activity under high Cd stress (20 and 40?mg/kg). Highly positive correlations between the Cd content with enzymes activity and enzymes activity with thiol compound content were observed. Results indicated that DSE played a role in activating GSH metabolism in maize leaves under Cd stress.  相似文献   

4.
Glutathione peroxidases (GPOXs) and glutathione transferases, also termed glutathione S-transferases (GST, EC 2.5.1.18), with activities toward a range of xenobiotic substrates including herbicides, have been characterized in etiolated pea (Pisum sativum L. cv. Feltham's First) seedlings. Crude extracts showed high activity toward a range of GST substrates including 1-chloro-2,4-dinitrobenzene (GSTC activity) and the herbicide fluorodifen (GSTF) but low activities toward chloroacetanilides and atrazine. Treatment of the pea seedlings with the herbicide safener dichlormid selectively increased the activity of GSTC and the GST which detoxified atrazine. This induction was restricted to the roots and was not observed with any of the other GST or GPOX activities. In contrast, treatment with CuCl2 increased GPOX activity in the root but had no effect on any GST activity, while treatment of epicotyls with elicitors of the phytoalexin response increased GST activity toward ethacrynic acid, but had no effect on other GST or GPOX activities. The major enzymes with GSTC, GSTF and GPOX activities were purified from pea epicotyls 3609-fold, 1431-fold and 1554-fold, respectively. During purification by hydrophobic interaction chromatography and affinity chromatography using S-hexyl-glutathione as ligand all three activities co-eluted but could be partially resolved by anion exchange chromatography and gel filtration chromatography. Both GSTC and GPOX had a molecular mass of 48 kDa and their activities were associated with a similar 27.5-kDa subunit but distinct 29-kDa subunits. GSTF could be resolved into two isoenzymes with molecular masses of 49.5 and 54 kDa. GSTF activity was associated with a unique 30-kDa subunit in addition to 27.5- and 29-kDa peptides, suggesting that the two isoenzymes were composed of differing subunits. These results demonstrate that peas contain multiple GST isoenzymes some of which have GPOX activity and that the various activities are differentially responsive to biotic and abiotic stress.  相似文献   

5.
To understand the interaction between Zn, an essential micronutrient and Cd, a non-essential element, Cd-10 microM and Zn supplemented (10, 50, 100, and 200 microM) Cd 10 microM treated Ceratophyllum demersum L. (Coontail), a free floating freshwater macrophyte was chosen for the study. Cadmium at 10 microM concentration decreased thiol content, enhanced oxidation of ascorbate (AsA) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively, a clear indication of oxidative stress. Zinc supplementation to Cd (10 microM) treated plants effectively restored thiols, inhibited oxidation of AsA and GSH maintaining the redox molecules in reduced form. Cd-10 microM slightly induced ascorbate peroxidase (APX, E.C. 1.11.1.11) but inhibited monodehydroascorbate reductase (MDHAR, E.C. 1.6.5.4), dehydroascorbate reductase (DHAR, E.C. 1.8.5.1) and glutathione reductase (GR, E.C. 1.6.4.2), enzymes of ascorbate-glutathione cycle (AGC). Zn supplementation restored and enhanced the functional activity of all the AGC enzymes (APX, MDHAR, DHAR and GR). Gamma-glutamylcysteine synthetase (gamma-GCS, E.C. 6.3.2.2) was not affected by Cd as well as Zn, but Zn supplements increased glutathione-S-transferase (GST, E.C. 2.5.1.18) activity to a greater extent than Cd and simultaneously restored glutathione peroxidase (GSH-PX, E.C. 1.11.1.9) activity impaired by Cd toxicity. Zn-alone treatments did not change above investigated parameters. These results clearly indicate the protective role of Zn in modulating the redox status of the plant system through the antioxidant pathway AGC and GSH metabolic enzymes for combating Cd induced oxidative stress.  相似文献   

6.
东亚飞蝗谷胱甘肽S-转移酶分离纯化   总被引:3,自引:2,他引:1  
通过硫酸铵沉淀技术和GSH-agarose亲和层析对东亚飞蝗Locusta migratoria manilensis(Meyen)5龄若虫谷胱甘肽S-转移酶(glutathione S-transferases,GSTs)进行了分离纯化。结果表明GSTs活性在硫酸铵各沉淀段均有分布,但在55%~100%沉淀段活性较高,在硫酸铵饱和度为85%时比活力最高,达到420.33μmol/min/mg protein,纯化倍数为18.86。根据硫酸铵粗沉淀谷胱甘肽S-转移酶结果,选择硫酸铵浓度为60%~90%沉淀段进行GSH-agarose亲和层析,纯化后比活力最高达到1365.29μmol/min/mg protein,纯化倍数达到61.25。经SDS-PAGE鉴定,得到的GST为1条带,亚基的分子量约为24kDa。  相似文献   

7.
A glutathione S-transferase (GST) isozyme from maize (Zea mays Pioneer hybrid 3906) treated with the dichloroacetamide herbicide safener benoxacor (CGA-154281) was purified to homogeneity and partially characterized. The enzyme, assayed with metolachlor as a substrate, was purified approximately 200-fold by ammonium sulfate precipitation, anion-exchange chromatography on Mono Q resins, and affinity chromatography on S-hexylglutathione agarose from total GST activity present in etiolated shoots. The purified protein migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) as a single band with a molecular mass of 27 kD. Using nondenaturing PAGE, we determined that the native protein has a molecular mass of about 57 kD and that the protein exists as a dimer. Two-dimensional electrophoresis revealed only a single protein with an isoelectric point of 5.75 and molecular mass of 27 kD. These results further suggest that the protein exists as a homodimer of two identical 27-kD subunits. The enzyme was most active with substrates possessing a chloroacetamide structure. trans-Cinnamic acid and 1-chloro-2,4-dinitrobenzene were not effective substrates. Apparent Km values for the enzyme were 10.8 microM for the chloroacetamide metolachlor and 292 microM for glutathione. The enzyme was active from pH 6 to 9, with a pH optimum between 7.5 and 8. An apparently blocked amino terminus of the intact protein prevented direct amino acid sequencing. The enzyme was digested with trypsin, and the amino acid sequences of several peptide fragments were obtained. The sequence information for the isolated GST we have designated "GST IV" indicates that the enzyme is a unique maize GST but shares some homology with maize GSTs I and III.  相似文献   

8.
Pea (Pisum sativum L. cv. Azad) plants exposed to 4 and 40 microM of Cd for 7 d in hydroponic culture were analysed with reference to the distribution of metal, the accumulation of biomass and the metal's effects on antioxidants and antioxidative enzymes in roots and leaves. Cd-induced a decrease in plant biomass. The maximum accumulation of Cd occurred in roots followed by stems and leaves. An enhanced level of lipid peroxidation and an increased tissue concentration of hydrogen peroxide (H2O2) in both roots and leaves indicated that Cd caused oxidative stress in pea plants. Roots and leaves of pea plants responded differently to Cd with reference to the induction of enhanced activities of most of the enzymes monitored in the present study. These differential responses to Cd were further found to be associated with levels of Cd to which the plants were exposed. Cd-induced enhancement in superoxide dismutase (SOD) activity was more at 40 microM than at 4 microM in leaves. While catalase (CAT) prominently increased in leaves both at 4 and 40 microM Cd, ascorbate peroxidase (APX) showed maximum stimulation at 40 microM Cd in roots. Enhancement in glutathione reductase (GR) activity was also more at 40 microM than at 4 microM Cd in roots. While glutathione peroxidase (GPOX) activity decreased in roots and remained almost unmodified in leaves, glutathione S-transferase (GST) showed pronounced stimulation in both roots and leaves of pea plants exposed to 40 microM Cd. Increased activities of antioxidative enzymes in Cd-treated plants suggest that they have some additive function in the mechanism of metal tolerance in pea plants.  相似文献   

9.
Gao KH  Ge Y  Zhang CH 《应用生态学报》2011,22(7):1796-1802
通过设置缺硫(S)处理,研究了镉(Cd)胁迫下水稻生长情况、幼苗Cd和非蛋白巯基含量以及谷胱甘肽硫转移酶(GST)活性的动态变化.结果表明:Cd胁迫明显抑制了水稻生长,显著诱导了巯基物质[非蛋白巯基(NPT)、谷胱甘肽(GSH)、植物螯合肽(PC)]的合成,GST活性表现出先升后降的趋势.缺S处理下,尽管水稻根部对Cd的吸收和向地上部的转运都有所增加,但Cd胁迫程度并未明显增强,巯基物质含量明显降低,根部GST活性提高.表明巯基物质和GST在水稻抗Cd胁迫过程中互为补充,在一定程度上减轻了Cd的毒性效应.  相似文献   

10.
In fish, as in other aerobic organisms, glutathione and glutathione-related enzymes are important components in the defences against oxidative stress. To study if hepatic glutathione levels and/or activities of glutathione-related enzymes can act as indicators of oxidative stress in fish, we injected rainbow trout (Oncorhynchus mykiss) intraperitoneally with paraquat (PQ), menadione (MD), naphthazarin (DHNQ), or beta-naphthoflavone (beta-NF), all known to cause a rise in reactive oxygen species (ROS). After 2 and 5 days of exposure, we measured the activities of hepatic glutathione peroxidase (GPox), glutathione S-transferase (GST), gamma-glutamylcysteine synthetase (GCS), and glutathione reductase (GR). We also measured total glutathione (tGSH) and oxidised glutathione (GSSG) in the liver of fish treated with PQ and MD. All chemicals caused an increase in GR activity after 5 days, which ranged from 160% in fish treated with beta-NF to 1,500% in fish treated with PQ. All chemicals except beta-NF caused moderate elevation in GST activity; GPox activity was lower in fish treated with DHNQ and MD, while GCS activity increased twofold in the fish treated with DHNQ, without being affected by beta-NF, PQ or MD. After 5 days of treatment with PQ or MD, tGSH content was elevated. Our findings demonstrated that of the parameters included in the study, GR activity was the most responsive to treatment with redox cycling compounds, indicating that GR activity is a promising biomarker of such compounds and possibly indicating oxidative stress in rainbow trout.  相似文献   

11.
Glutathione S-transferase (GST) activity was detected in larvae of the Australian sheep blowfly Lucilia cuprina, and in the nematode Haemonchus contortus. A specific inhibitor of the enzyme was shown to affect survival of both species of parasite in vitro. GST from both parasites has been purified and partially characterized. Antisera raised to the purified enzymes were shown to inhibit the enzyme activity in vitro. However, the antisera had no effect on the survival of either parasite.  相似文献   

12.
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.  相似文献   

13.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   

14.
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger.  相似文献   

15.
16.
The aim of this work was to assess the effect of different Cd2+concentrations on some antioxidant enzymes in Festuca arundinacea. Increased activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione S-transferase, and glutathione reductase were ascertained in response to low Cd2+ concentrations (0–20 μM), whereas the enzyme activities were less increased or decreased at a higher Cd2+ dosage (50 μM) and a longer exposure. The content of reduced glutathione (GSH) decreased significantly with increasing Cd2+ concentrations, whereas the content of oxidized glutathione (GSSG) increased proportionally to the amount of Cd2+ applied. Further experiments, performed by incubating the enzyme extracts with oxidized glutathione, evidenced that the addition of GSSG to the incubation mixtures caused significant decreases of some enzymatic activities. Finally, the effect of glutathione S-transferase, FaGST I, extracted from fescue seedlings and purified till homogeneity, on these enzyme activities was investigated. It was found that FaGST I enhanced the decreased enzymatic activities caused by GSSG.  相似文献   

17.
Glutathione S-transferases (GSTs) are a family of detoxifying enzymes that catalyze the conjugation of glutathione (GSH) to electrophiles, thereby increasing the solubility of GSH and aiding its excretion from the cell. In this study, a glutatione S-transferase from the gills of the marine shrimp Litopenaeus vannamei was purified by affinity chromatography using a glutathione-agarose affinity column. GST was purified to homogeneity as judged by reducing SDS-PAGE and zymograms. This enzyme is a homodimer composed of approximately 25-kDa subunits and identified as a Mu-class GST based on its activity against 1-chloro-2,4-dinitrobenzene (CDNB) and internal peptide sequence. The specific activity of purified GST was 440.12 micromol/(min mg), and the K(m) values for CDNB and GSH are very similar (390 and 335 microM, respectively). The intersecting pattern of the initial velocities of this enzyme in the Lineweaver-Burke plot is consistent with a sequential steady-state kinetic mechanism. The high specific activity of shrimp GST may be related to a highly effective detoxification mechanism necessary in gills since they are exposed to the external and frequently contaminated environment.  相似文献   

18.
We purified and characterized two major glutathione S-transferase isoenzymes (GST2 and GST3) from snail Bulinus truncatus (Mollusca, Gastropoda, Planorbidae) tissue. The Km with respect to 1-chloro-2, 4-dinitrobenzene (CDNB) for both isoenzymes was increased as the pH decreased. Km of both isoenzymes with respect to glutathione (GSH) doubled when the pH was increased from 6.0 to 6.5. Acid inactivated GST2 and GST3 and the two enzymes were almost inactive at pH 3.5. However, they retain the full activity for at least 20 h when incubated at pH between 6.0 and 9.0. The optimum temperature was 45 degrees C for GST2 and 50 degrees C for GST3. The half lifetime at 50 degrees C was 70 min and 45 min for GST2 and GST3 isoenzymes, respectively. Addition of 5 mM GSH to the incubation buffer increased the half life of both isoenzymes more than fourfold. The activation energy for catalyzing the conjugation of CDNB was 1.826 and 3.435 kcal/mol for GST2 and GST3, respectively. I50 values for Cibacron blue, bromosulphophthalein, indocyanine green, hematin and ethacrynic acid were 0.76 microM, 47.9 microM, 7.59 microM, 0.03 microM and 0.79 microM for GST2, and 0.479 microM, 79.4 microM, 89.1 microM, 32.4 microM and 1.15 microM for GST3, respectively. Cibacron blue and indocyanine green were non-competitive inhibitors, while hematin was a mixed inhibitor. Bromosulphophthalein was found to be a competitive inhibitor for GST2 and a mixed inhibitor for GST3.  相似文献   

19.
镉对长江华溪蟹肝胰腺抗氧化酶活力的影响   总被引:9,自引:0,他引:9  
闫博  王兰  李涌泉  刘娜  王茜 《动物学报》2007,53(6):1121-1128
重金属对环境的污染已成为全球面临的首要问题之一,其中镉(Cd2 )是一种广泛存在的毒性污染物,能通过消化道和呼吸道进入生物体,对机体造成损伤(Zyadah and Abdel-Baky,2000)。研究表明,Cd2 可以通过Ca2 通道穿过细胞膜进入机体(Roesijadi and Robinson,1994),诱导产生大量自由基和活性氧(ROS),从而形成氧胁迫(Toppi andGabbrielli,1994;Hegedus et al.,2001)。ROS可以与体内脂质、蛋白质和核酸反应,导致脂质过氧化、细胞膜损伤并且影响多种酶的活力,对生物体造成威胁。由于在水生生态系统中生物富集污染物的作用明显,故相对于陆地生…  相似文献   

20.
Cancer is a serious problem affecting the health of all human societies. Chemotherapy refers to the use of drugs to kill cancer or the origin of cancer. In the past three decades, researchers have studied about proteins and their roles in the production of cancer cells. Glutathione S-transferases (GSTs) are a superfamily of enzymes that play a key role in cellular detoxification, protecting against reactive electrophiles attacks, including chemotherapeutic agents. Glutathione reductase (GR) is an important antioxidant enzyme involved in protecting the cell against oxidative stress. In this current study, GST and GR enzymes were purified from human erythrocytes using affinity chromatography. GR was obtained with a specific activity of 5.95 EU/mg protein and a 52.38 % yield. GST was obtained with a specific activity of 4.88 EU/mg protein and a 74.88 % yield. The effect of fluorophenylthiourea derivatives on the purified enzymes was investigated. Afterward, KI values were found to range from 23.04±4.37 μM–59.97±13.45 μM for GR and 7.22±1.64 μM–41.24±2.55 μM for GST. 1-(2,6-difluorophenyl)thiourea was showed the best inhibition effect for both GST and GR enzymes. The relationships of inhibitors with 3D structures of GST and GR were explained by molecular docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号