首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sakai H  Tanaka T  Itoh T 《Gene》2007,392(1-2):59-63
Despite a wide distribution of transposable elements (TEs) in the genomes of higher eukaryotes, much of their evolutionary significance remains unclear. Recent studies have indicated that TEs are involved with biological processes such as gene regulation and the generation of new exons in mammals. In addition, the completion of the genome sequencings in Arabidopsis thaliana and Oryza sativa has permitted scientist to describe a genome-wide overview in plants. In this study, we examined the positions of TEs in the genome of O. sativa. Although we found that more than 10% of the structural genes contained TEs, they were underrepresented in exons compared with non-exonic regions. TEs also appeared to be inserted preferentially in 3'-untranslated regions in exons. These results suggested that purifying selection against TE insertion has played a major role during evolution. Moreover, our comparison of the numbers of TEs in the protein-coding regions between single copy genes and duplicate genes showed that TEs were more frequent in duplicate than single copy genes. This observation indicated that gene duplication events created a large number of functionally redundant genes. Subsequently, many of them were destroyed by TEs because the redundant copies were released from purifying selection. Another biological role of TEs was found to be the recruitment of new exons. We found that approximately 2% of protein-coding genes contained TEs in their coding regions. Insertion of TEs in genic regions may have the potential to be an evolutionary driving force for the creation of new biological functions.  相似文献   

2.
The goal of this study was to assess the extent to which transposable elements (TEs) have contributed to protein-coding regions in Arabidopsis thaliana. To do this, we first characterized the extent of chimeric TE-gene constructs. We compared a genome-wide TE database to genomic sequences, annotated coding regions, and EST data. The comparison revealed that 7.8% of expressed genes contained a region with close similarity to a known TE sequence. Some groups of TEs, such as helitrons, were underrepresented in exons relative to their genome-wide distribution; in contrast, Copia-like and En/Spm-like sequences were overrepresented in exons. These 7.8% percent of genes were enriched for some GO-based functions, particularly kinase activity, and lacking in other functions, notably structural molecule activity. We also examined gene family evolution for these genes. Gene family information helped clarify whether the sequence similarity between TE and gene was due to a TE contributing to the gene or, instead, the TE co-opting a portion of the gene. Most (66%) of these genes were not easily assigned to a gene family, and for these we could not infer the direction of the relationship between TE and gene. For the remainder, where appropriate, we built phylogenetic trees to infer the direction of the TE-gene relationship by parsimony. By this method, we verified examples where TEs contributed to expressed proteins. Our results are undoubtedly conservative but suggest that TEs may have contributed small protein segments to as many as 1.2% of all expressed, annotated A. thaliana genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Despite the wide distribution of transposable elements (TEs) in mammalian genomes, part of their evolutionary significance remains to be discovered. Today there is a substantial amount of evidence showing that TEs are involved in the generation of new exons in different species. In the present study, we searched 22,805 genes and reported the occurrence of TE-cassettes in coding sequences of 542 cow genes using the RepeatMasker program. Despite the significant number (542) of genes with TE insertions in exons only 14 (2.6%) of them were translated into protein, which we characterized as chimeric genes. From these chimeric genes, only the FAST kinase domains 3 (FASTKD3) gene, present on chromosome BTA 20, is a functional gene and showed evidence of the exaptation event. The genome sequence analysis showed that the last exon coding sequence of bovine FASTKD3 is approximately 85% similar to the ART2A retrotransposon sequence. In addition, comparison among FASTKD3 proteins shows that the last exon is very divergent from those of Homo sapiens, Pan troglodytes and Canis familiares. We suggest that the gene structure of bovine FASTKD3 gene could have originated by several ectopic recombinations between TE copies. Additionally, the absence of TE sequences in all other species analyzed suggests that the TE insertion is clade-specific, mainly in the ruminant lineage.  相似文献   

10.
11.
C Gao  M Xiao  X Ren  A Hayward  J Yin  L Wu  D Fu  J Li 《Genomics》2012,100(4):222-230
The movement of transposable elements (TE) in eukaryotic genomes can often result in the occurrence of nested TEs (the insertion of TEs into pre-existing TEs). We performed a general TE assessment using available databases to detect nested TEs and analyze their characteristics and putative functions in eukaryote genomes. A total of 802 TEs were found to be inserted into 690 host TEs from a total number of 11,329 TEs. We reveal that repetitive sequences are associated with an increased occurrence of nested TEs and sequence biased of TE insertion. A high proportion of the genes which were associated with nested TEs are predicted to localize to organelles and participate in nucleic acid and protein binding. Many of these function in metabolic processes, and encode important enzymes for transposition and integration. Therefore, nested TEs in eukaryotic genomes may negatively influence genome expansion, and enrich the diversity of gene expression or regulation.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Fablet M  Rebollo R  Biémont C  Vieira C 《Gene》2007,390(1-2):84-91
It has now been established that transposable elements (TEs) make up a variable, but significant proportion of the genomes of all organisms, from Bacteria to Vertebrates. However, in addition to their quantitative importance, there is increasing evidence that TEs also play a functional role within the genome. In particular, TE regulatory regions can be viewed as a large pool of potential promoter sequences for host genes. Studying the evolution of regulatory region of TEs in different genomic contexts is therefore a fundamental aspect of understanding how a genome works. In this paper, we first briefly describe what is currently known about the regulation of TE copy number and activity in genomes, and then focus on TE regulatory regions and their evolution. We restrict ourselves to retrotransposons, which are the most abundant class of eukaryotic TEs, and analyze their evolution and the subsequent consequences for host genomes. Particular attention is paid to much-studied representatives of the Vertebrates and Invertebrates, Homo sapiens and Drosophila melanogaster, respectively, for which high quality sequenced genomes are available.  相似文献   

19.
20.
Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号