首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External genital development begins with formation of paired genital swellings, which develop into the genital tubercle. Proximodistal outgrowth and axial patterning of the genital tubercle are coordinated to give rise to the penis or clitoris. The genital tubercle consists of lateral plate mesoderm, surface ectoderm, and endodermal urethral epithelium derived from the urogenital sinus. We have investigated the molecular control of external genital development in the mouse embryo. Previous work has shown that the genital tubercle has polarizing activity, but the precise location of this activity within the tubercle is unknown. We reasoned that if the tubercle itself is patterned by a specialized signaling region, then polarizing activity may be restricted to a subset of cells. Transplantation of urethral epithelium, but not genital mesenchyme, to chick limbs results in mirror-image duplication of the digits. Moreover, when grafted to chick limbs, the urethral plate orchestrates morphogenetic movements normally associated with external genital development. Signaling activity is therefore restricted to urethral plate cells. Before and during normal genital tubercle outgrowth, urethral plate epithelium expresses Sonic hedgehog (Shh). In mice with a targeted deletion of Shh, external genitalia are absent. Genital swellings are initiated, but outgrowth is not maintained. In the absence of Shh signaling, Fgf8, Bmp2, Bmp4, Fgf10, and Wnt5a are downregulated, and apoptosis is enhanced in the genitalia. These results identify the urethral epithelium as a signaling center of the genital tubercle, and demonstrate that Shh from the urethral epithelium is required for outgrowth, patterning, and cell survival in the developing external genitalia.  相似文献   

2.
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh–Wnt/Ctnnb1–Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.  相似文献   

3.
Extra-corporal fertilization depends on the formation of copulatory organs: the external genitalia. Coordinated growth and differentiation of the genital tubercle (GT), an embryonic anlage of external genitalia, generates a proximodistally elongated structure suitable for copulation, erection, uresis and ejaculation. Despite recent progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes of external genitalia formation. Bone morphogenetic protein genes (Bmp genes) and their antagonists were spatiotemporally expressed during GT development. Exogenously applied BMP increased apoptosis of GT and inhibited its outgrowth. It has been shown that the distal urethral epithelium (DUE), distal epithelia marked by the Fgf8 expression, may control the initial GT outgrowth. Exogenously applied BMP4 downregulated the expression of Fgf8 and Wnt5a, concomitant with increased apoptosis and decreased cell proliferation of the GT mesenchyme. Furthermore, noggin mutants and Bmpr1a conditional mutant mice displayed hypoplasia and hyperplasia of the external genitalia respectively. noggin mutant mice exhibited downregulation of Wnt5a and Fgf8 expression with decreased cell proliferation. Consistent with such findings, Wnt5a mutant mice displayed GT agenesis with decreased cell proliferation. By contrast, Bmpr1a mutant mice displayed decreased apoptosis and augmented Fgf8 expression in the DUE associated with GT hyperplasia. These results suggest that some of the Bmp genes could negatively affect proximodistally oriented outgrowth of GT with regulatory functions on cell proliferation and apoptosis. The DUE region can be marked only until 14.0 dpc (days post coitum) in mouse development, while GT outgrowth continues thereafter. Possible signaling crosstalk among the whole distal GT regions were also investigated.  相似文献   

4.
Coordinated growth and differentiation of external genitalia generates a proximodistally elongated structure suitable for copulation and efficient fertilization. The differentiation of external genitalia incorporates a unique process, i.e. the formation of the urethral plate and the urethral tube. Despite significant progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes for external genitalia. The sonic hedgehog (Shh) gene and its signaling genes have been found to be dynamically expressed during murine external genitalia development. Functional analysis by organ culture revealed that Shh could regulate mesenchymally expressed genes, patched 1 (Ptch1), bone morphogenetic protein 4 (Bmp4), Hoxd13 and fibroblast growth factor 10 (Fgf10), in the anlage: the genital tubercle (GT). Activities of Shh for both GT outgrowth and differentiation were also demonstrated. Shh(-/-) mice displayed complete GT agenesis, which is compatible with such observations. Furthermore, the regulation of apoptosis during GT formation was revealed for the first time. Increased cell death and reduced cell proliferation of the Shh(-/-) mice GT were shown. A search for alterations of Shh downstream gene expression identified a dramatic shift of Bmp4 gene expression from the mesenchyme to the epithelium of the Shh mutant before GT outgrowth. Regulation of mesenchymal Fgf10 gene expression by the epithelial Shh was indicated during late GT development. These results suggest a dual mode of Shh function, first by the regulation of initiating GT outgrowth, and second, by subsequent GT differentiation.  相似文献   

5.
Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia   总被引:8,自引:0,他引:8  
In humans and mice, mutations in Hoxa13 cause malformation of limb and genitourinary (GU) regions. In males, one of the most common GU malformations associated with loss of Hoxa13 function is hypospadia, a condition defined by the poor growth and closure of the urethra and glans penis. By examining early signaling in the developing mouse genital tubercle, we show that Hoxa13 is essential for normal expression of Fgf8 and Bmp7 in the urethral plate epithelium. In Hoxa13(GFP)-mutant mice, hypospadias occur as a result of the combined loss of Fgf8 and Bmp7 expression in the urethral plate epithelium, as well as the ectopic expression of noggin (Nog) in the flanking mesenchyme. In vitro supplementation with Fgf8 restored proliferation in homozygous mutants to wild-type levels, suggesting that Fgf8 is sufficient to direct early proliferation of the developing genital tubercle. However, the closure defects of the distal urethra and glans can be attributed to a loss of apoptosis in the urethra, which is consistent with reduced Bmp7 expression in this region. Mice mutant for Hoxa13 also exhibit changes in androgen receptor expression, providing a developmental link between Hoxa13-associated hypospadias and those produced by antagonists to androgen signaling. Finally, a novel role for Hoxa13 in the vascularization of the glans penis is also identified.  相似文献   

6.
The mammalian external genitalia are specialized appendages for efficient copulation, internal fertilization and display marked morphological variation among species. In this paper, we described the embryonic development of mouse genital tubercle (GT), an anlage of the external genitalia utilizing the scanning electron microscope (SEM) analysis. It has been shown that the Distal Urethral Epithelium (DUE) may fulfill an essential role in the outgrowth control of the GT. Our present SEM analysis revealed a small distal protrusion at the tip of the GT of normal embryos as well as some morphological differences between male and female embryonic external genitalia. Previous analysis shows that the teratogenic dose of Retinoic Acid (RA) induces a drastic marformation of the urethral plate, but not gross abnormalities for GT outgrowth. Interestingly, a small distal protrusion at the tip of GT was clearly observed also after RA treatement. Furthermore, we showed that treatment with anti-androgen flutamide resulted in the demasculinization of the GT in males. The unique character of GT development and the sexual dimorphism are discussed.  相似文献   

7.
C A Anderson  R L Clark 《Teratology》1990,42(5):483-496
The normal histogenesis of the rat genital tubercle and the effect of exposure in utero to the 5 alpha-reductase inhibitor finasteride (L-652,931; MK-0906; Proscar) on that process were studied. In normal males and females, the genital tubercle was first seen on Day 14.25 of gestation. It contained a urethral plate which extended from the cloaca (and after Day 15.25, from the urogenital sinus) to the tip of the tubercle. On Day 18.25 the glans lamellae, which would separate the glans penis or the clitoris from the prepuce, began to develop in both sexes. Also on Day 18.25 a dense, midline plate of mesenchymal cells was first evident between the urogenital sinus and the rectum in normal males. This plate acted as a wedge, first increasing the separation between the rectum and the urogenital sinus, and subsequently separating the urethral plate from the surface epithelium in the genital tubercle. As a result, by Day 21.25 the urethra in males followed an "S"-shaped course, extending from the pelvis through the center of the glans penis to an orifice near the tip of the genital tubercle. In females, in which a mesenchymal plate did not develop, the urethral orifice remained at the base of the tubercle, and the clitoris contained the remnants of the urethral plate, extending as an open groove from the urethral orifice to the tip of the tubercle. Finasteride did not affect development of the genital tubercle in females. However, in males exposed to finasteride in utero, there was variable failure of the mesenchymal wedge to develop. As a result, the urethral plate remained in contact with the surface epithelium and eventually opened to form a groove on the ventral surface of the glans penis (hypospadias). Also, the persistence of the urethral plate along the ventral midline in finasteride-treated male fetuses and its subsequent opening as a groove interfered with development of the glans lamellae, causing displacement of the frenulum distally on the glans penis and the development of a cleft in the prepuce.  相似文献   

8.
External genitalia are body appendages specialized for internal fertilization. Their development can be divided into two phases, an early androgen-independent phase and a late androgen-dependent sexual differentiation phase. In the early phase, the embryonic anlage of external genitalia, the genital tubercle (GT), is morphologically identical in both sexes. Although congenital external genitalia malformations represent the second most common birth defect in humans, the genetic pathways governing early external genitalia development and urethra formation are poorly understood. Proper development of the GT requires coordinated outgrowth of the mesodermally derived mesenchyme and extension of the endodermal urethra within an ectodermal epithelial capsule. Here, we demonstrate that beta-catenin plays indispensable and distinct roles in each of the aforementioned three tissue layers in early androgen-independent GT development. WNT-beta-catenin signaling is required in the endodermal urethra to activate and maintain Fgf8 expression and direct GT outgrowth, as well as to maintain homeostasis of the urethra. Moreover, beta-catenin is required in the mesenchyme to promote cell proliferation. By contrast, beta-catenin is required in the ectoderm to maintain tissue integrity, possibly through cell-cell adhesion during GT outgrowth. The fact that both endodermal and ectodermal beta-catenin knockout animals develop severe hypospadias in both sexes raises the possibility that the deregulation of any of these functions can contribute to the etiology of congenital external genital defects in humans.  相似文献   

9.
The most widely accepted mechanism of male urethral development proposes that the urethral plate is elevated by urethral folds which fuse ventrally in a proximal-to-distal sequence. Unlike its proximal counterpart, the urethra which forms within the glans is lined by a stratified squamous epithelium and has a more controversial development. One theory supports the idea that fusion of the urethral folds extends all the way to the tip of the glans. Another theory suggests that a solid ectodermal in-growth of epidermis canalizes the glandar urethra. We hypothesized that the use of immunohistochemical staining and tissue recombinant grafting would delineate the epithelia involved and lend clues to their origin. Thirty-six human fetal phallic specimens of gestational ages 5-22 weeks were sectioned and stained immunohistochemically with antibodies raised against different cytokeratins. Evaluation of the sections showed that the urethral plate, an extension of the urogenital sinus, extended to the tip of the phallus and maintained patency and continuity throughout the process of urethral development. The entire urethra, including the glans portion, was formed by dorsal extension and disintegration of the urethral plate combined with ventral growth and fusion of the urethral folds. Sections of the distal glandar urethra showed no evidence of a solid ectodermal ingrowth. Rather, immunostaining results at different ages suggested differentiation of the endodermal urethral plate into a stratified squamous epithelium. To determine whether urothelium could be induced to express a stratified squamous phenotype, mouse fetal bladder epithelium was combined with rat fetal genital tubercle mesenchyme and grown under the renal capsule of athymic mice. The bladder epithelium differentiated into a stratified squamous epithelium. Thus, proper mesenchymal signaling may induce differentiation of urothelium into a stratified squamous phenotype, such as during development of the urethra of the glans penis.  相似文献   

10.
Sex assignment in newborns depends on the anatomy of the external genitalia, despite this stage being the final in embryogenesis. According to the current view, the genital tubercle is the embryonic precursor of penis and clitoris. It originates from mesenchymal tissue, but mesenchymal cells are arranged across the embryonal body and do not have specific androgen receptors. The nature of the signal that initiates early derivation of the indifferent genital tubercle is unknown at present. The aims of this article are to improve surgical management of intersex disorders and investigate the development of the genital tubercle. Clinical examination of 114 females with various forms of DSD revealed ambiguous (bisexual) external genitalia in 73 patients, and 51 of them underwent feminizing surgery. Intersexuality (ambiguity) in 46,XY patients results from disruptors in the pathways of sex steroid hormones or receptors; in 46,XX females arises from excessive levels of androgens. Systematization of intersex disorders distinguishes the karyotype, gonadal morphology, and genital anatomy to provide a differential diagnosis and guide appropriate surgical management. Modified feminizing clitoroplasty with preservation of the dorsal and ventral neurovascular bundles to retain erogenous sensitivity was performed in females with severe virilization (Prader degree III-V). The outgrowth of the genital tubercle and the fusion of the urethral fold proceed in an ordered fashion; but in some cases of ambiguity, there was discordance due to different pathways. Speculation about the derivation of the genital tubercle have discussed with a literature review. The genital tubercle derives from the following 3 layers: the ectodermal glans of the tubercle, the mesodermal corpora cavernosa and the endodermal urogenital groove. According to the new hypothesis, during the indifferent stages, the 5 sacral somites have to recede from their segmentation and disintegrate: the sclerotomes form the pelvic bones, the fused myotomes follow with their genuine neurotomes and the angiotomes join to the corpora cavernosa of the genital tubercle. Sexual differentiation of external genitalia is final in gender embryogenesis, but surprisingly derivation of the indifferent genital tubercle from 5 somites occurs before gonadal and internal organs development.  相似文献   

11.
Development of external genitalia in mammalian embryos requires tight coordination of a complex series of morphogenetic events involving outgrowth, proximodistal and dorsoventral patterning, and epithelial tubulogenesis. Hypospadias is a congenital defect of the external genitalia that results from failure of urethral tube closure. Although this is the second most common birth defect in humans, affecting one in every 250 children, the molecular mechanisms that regulate morphogenesis of the mammalian urethra are poorly understood. We report that mice lacking the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2) exhibit severe hypospadias. Urethral signaling regions, as indicated by Shh and Fgf8 expression, are established in Fgfr2-IIIb null mice; however, cell proliferation arrests prematurely and maturation of the urethral epithelium is disrupted. Fgfr2-IIIb-/- mutants fail to maintain the progenitor cell population required for uroepithelial renewal during tubular morphogenesis. In addition, we show that antagonism of the androgen receptor (AR) leads to loss of Fgfr2-IIIb and Fgf10 expression in the urethra, and an associated hypospadias phenotype, suggesting that these genes are downstream targets of AR during external genital development. Genitourinary defects resulting from disruption of AR activity, by either genetic or environmental factors, may therefore involve negative regulation of the Fgfr2 pathway. This represents the first example of how the developing genitourinary system integrates cues from systemically circulating steroid hormones with a locally expressed growth factor pathway.  相似文献   

12.
Murine reproductive tissues of the external genitalia and perineum develop with remarkably distinctive characteristics in males and females. Although many researches on such mouse organ development have been reported, there are still limited parameters that evaluate the developmental sexual differences of external genitalia and perineum. Furthermore, elucidation of the recent developmental signals for the external genitalia and perineum requires up‐to‐date knowledge of gene functions in reproductive science. To promote researches on reproductive organ formation, establishment of parameters for the androgen‐mediated formation of external genitalia and perineum is essential. In this study, we propose genital sex differentiation parameters (GSDP), a set of developmental parameters based on systematic three‐dimensional tissue reconstruction and cumulative histological analyses. We define the sexual differences of external genitalia and perineum by GSDP through analyzing mouse models, androgen inhibitor‐induced feminization experiments and Mafb mutant mouse with defective urethral differentiation. The urethral parameters displayed prominent reduction by the androgen inhibitor (finasteride) treatment. However, genital tubercle (GT) size parameters were not affected by such treatment. These results indicated that sensitivity to dihydrotestosterone was different between embryonic GT size and urethral formation. Furthermore, we evaluated the extent of urethral defects of Mafb mutant mice by GSDP. Thus, GSDP is a set of useful parameters to define the sexual differences during external genitalia and perineum development.  相似文献   

13.
Proximal-to-distal growth of the embryonic limbs requires Fgf10 in the mesenchyme to activate Fgf8 in the apical ectodermal ridge (AER), which in turn promotes mesenchymal outgrowth. We show here that the growth arrest specific gene 1 (Gas1) is required in the mesenchyme for the normal regulation of Fgf10/Fgf8. Gas1 mutant limbs have defects in the proliferation of the AER and the mesenchyme and develop with small autopods, missing phalanges and anterior digit syndactyly. At the molecular level, Fgf10 expression at the distal tip mesenchyme immediately underneath the AER is preferentially affected in the mutant limb, coinciding with the loss of Fgf8 expression in the AER. To test whether FGF10 deficiency is an underlying cause of the Gas1 mutant phenotype, we employed a limb culture system in conjunction with microinjection of recombinant proteins. In this system, FGF10 but not FGF8 protein injected into the mutant distal tip mesenchyme restores Fgf8 expression in the AER. Our data provide evidence that Gas1 acts to maintain high levels of FGF10 at the tip mesenchyme and support the proposal that Fgf10 expression in this region is crucial for maintaining Fgf8 expression in the AER.  相似文献   

14.
The limb bud has a thickened epithelium at the dorsal-ventral boundary, the apical ectodermal ridge (AER), which sustains limb outgrowth and patterning. A secreted molecule fibroblast growth factor (FGF)10 is involved in inducing Fgf8 expression in the prospective AER and mutual interaction between mesenchymal FGF10 and FGF8 in the AER is essential for limb outgrowth. A secreted factor Wnt7a and a homeobox protein Lmx1 are involved in the dorsal patterning of the limb, whereas a homeobox protein Engrailed 1 (En1) is involved in the dorsal-ventral patterning as well as AER formation. Radical fringe (R-fng), a vertebrate homolog of Drosophila fringe was also found to elaborate AER formation in chicks. However, little is known about the molecular interactions between these factors during AER formation. The present study clarified the relationship between FGF10, Wnt7a, Lmx1, R-fng and En1 during limb development using a foil-barrier insertion experiment. It was found that a foil-barrier inserted into the chick prospective wing mesenchyme lateral to the mesonephric duct blocks AER induction. This experiment was expanded by implanting Fgf10-expressing cells lateral to the barrier and examined whether FGF10 could rescue the expression of the limb-patterning genes reported in AER formation. It was found that FGF10 is sufficient to induce Fgf8 expression in the ectoderm of the foil-inserted limb bud, concomitantly with R-fng and En1 expression. However, FGF10 could not rescue the expression of the dorsal marker genes, Wnt7a or Lmx1. Thus, it is suggested that epithelial factors of En1 and R-fng can induce Fgf8 expression in the limb ectoderm in cooperation with a mesenchymal factor FGF10. Some factor(s) other than FGF10, possibly from the paraxial structures medial to the limb mesoderm, is responsible for the initial dorsal-ventral specification of the limb bud.  相似文献   

15.
During development of the urogenital tract, fibroblast growth factor 8 (Fgf8) is expressed in mesonephric tubules, but its role in this tissue remains undefined. An evaluation of previously generated T-Cre-mediated Fgf8-deficient mice (T-Cre; Fgf8(flox/Δ2,3) mice), which lack Fgf8 expression in the mesoderm, revealed that the cranial region of the Wolffian duct degenerated prematurely and the cranial mesonephric tubules were missing. As a result, the epididymis, vas deferens and efferent ductules were largely absent in mutant mice. Rarb2-Cre was used to eliminate FGF8 from the mesonephric tubules but to allow expression in the adjacent somites. These mutants retained the cranial end of the Wolffian duct and formed the epididymis and vas deferens, but failed to elaborate the efferent ductules, indicating that Fgf8 expression by the mesonephric tubules is required specifically for the formation of the ductules. Ret knockout mice do not form the ureteric bud, a caudal outgrowth of the Wolffian duct and progenitor for the collecting duct network in the kidney, but they do develop the cranial end normally. This indicates that Fgf8, but not Ret, expression is essential to the outgrowth of the cranial mesonephric tubules from the Wolffian duct and to the development of major portions of the sex accessory tissues in the male reproductive tract. Mechanistically, FGF8 functions upstream of Lhx1 expression in forming the nephron, and analysis of Fgf8 mutants similarly shows deficient Lhx1 expression in the mesonephric tubules. These results demonstrate a multifocal requirement for FGF8 in establishing the male reproductive tract ducts and implicate Lhx1 signaling in tubule elongation.  相似文献   

16.
Normal penile development is dependent on testosterone, its conversion via steroid 5 alpha-reductase type 2 to dihydrotestosterone, and a functional androgen receptor (AR). The goal of this study was to investigate the distribution of AR and 5 alpha-reductase type 2 in the developing human fetal external genitalia with special emphasis on urethra formation. Twenty fetal genital specimens from normal human males (12-20 weeks gestation) were sectioned serially and stained by avidin-biotinylated peroxidase complex method with antigen retrieval. Stained sections throughout male genital development documented the expression of AR and 5 alpha-reductase type 2 in the phallus. Between 12 and 14 weeks of gestation, AR was localized to epithelial cells of the urethral plate in the glans, the tubular urethra of the penile shaft, and stromal tissue surrounding the urethral epithelium. In the fetal penis between 16 and 20 weeks gestation, the density of AR expression was greatest in urethral epithelial cells versus the surrounding stromal tissues. There was a characteristic pattern of AR expression in the glandular urethral epithelium between 16 and 20 weeks gestation. AR expression was greater along the ventral aspect of the glandular urethra than along the dorsal aspect of the urethral epithelium. The expression of 5 alpha-reductase type 2 was localized to the stroma surrounding the urethra, especially along the urethral seam area in the ventral portion of the remodeling urethra. These anatomical studies support the hypothesis that androgens are essential for the formation of the ventral portion of the urethra and that abnormalities in either the AR or 5 alpha-reductase type 2 can explain the occurrence of hypospadias.  相似文献   

17.
18.
During vertebrate limb development, the apical ectodermal ridge (AER) plays a vital role in both limb initiation and distal outgrowth of the limb bud. In the early chick embryo the prelimb bud mesoderm induces the AER in the overlying ectoderm. However, the direct inducer of the AER remains unknown. Here we report that FGF7 and FGF10, members of the fibroblast growth factor family, are the best candidates for the direct inducer of the AER. FGF7 induces an ectopic AER in the flank ectoderm of the chick embryo in a different manner from FGF1, -2, and -4 and activates the expression of Fgf8, an AER marker gene, in a cultured flank ectoderm without the mesoderm. Remarkably, FGF7 and FGF10 applied in the back induced an ectopic AER in the dorsal median ectoderm. Our results suggest that FGF7 and FGF10 directly induce the AER in the ectoderm both of the flank and of the dorsal midline and that these two regions have the competence for AER induction. Formation of the AER of the dorsal median ectoderm in the chick embryo is likely to appear as a vestige of the dorsal fin of the ancestors.  相似文献   

19.
Epithelial-mesenchymal interactions are essential for both limb outgrowth and pattern formation in the limb. Molecules capable of communication between these two tissues are known and include the signaling molecules SHH and FGF4, FGF8 and FGF10. Evidence suggests that the pattern and maintenance of expression of these genes are dependent on a number of factors including regulatory loops between genes expressed in the AER and those in the underlying mesenchyme. We show here that the mouse mutation dominant hemimelia (Dh) alters the pattern of gene expression in the AER such that Fgf4, which is normally expressed in a posterior domain, and Fgf8, which is expressed throughout are expressed in anterior patterns. We show that maintenance of Shh expression in the posterior mesenchyme is not dependent on either expression of Fgf4 or normal levels of Fgf8 in the overlying AER. Conversely, AER expression of Fgf4 is not directly dependent on Shh expression. Also the reciprocal regulatory loop proposed for Fgf8 in the AER and Fgf10 in the underlying mesenchyme is also uncoupled by this mutation. Early during the process of limb initiation, Dh is involved in regulating the width of the limb bud, the mutation resulting in selective loss of anterior mesenchyme. The Dh gene functions in the initial stages of limb development and we suggest that these initial roles are linked to mechanisms that pattern gene expression in the AER.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号