首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

2.
Increases in the brain concentrations of tryptophan and in serotonin (5-HT) metabolism are commonly observed in animals under stress. Previous experiments indicated that the increase in brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) observed in response to administration of endotoxin (lipopolysaccharide, LPS) and interleukin-1 (IL-1) were largely prevented by pretreatment with N-nitro-L-arginine methylester (L-NAME), an inhibitor of NO synthase (NOS). Therefore we tested whether the increases in tryptophan and 5-HT metabolism observed following restraint and footsthock were similarly affected. Mice were injected with L-NAME (30 mg/kg) or saline and restrained for 40 min. Restraint caused increases in concentrations of tryptophan and the catabolites of dopamine (DA), norepinephrine (NE) and 5-HT in the medial prefrontal cortex, hypothalamus, and brain stem. The L-NAME pretreatment significantly attenuated, but did not prevent, the changes in tryptophan and catecholamine metabolism, with a very small effect on the increase in plasma corticosterone. When mice pretreated with L-NAME were subjected to 30 min footshock, the NOS inhibitor had no statistically significant effects on the increases in DA, NE and 5-HT metabolism, but tended to attenuate the increases in tryptophan. We interpret these results to indicate that NOS plays a relatively small role in the cerebral neurochemical responses to restraint and footshock, but the role in the restraint-induced changes was greater than that in the footshock-induced ones. The attenuation of the restraint-related effects on the catecholamines most probably reflects a contribution to the CNS responses from peripheral vascular changes which are likely to be limited by the inhibition of NOS.  相似文献   

3.
Abstract: The effects of intracerebroventricular administration of the 5-hydroxytryptamine (5-HT)1A agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.1 pmol) on adrenocortical and neurochemical responses to stress were examined in conscious male rats. The following stress paradigms were used: acoustic stimulation (105 dB for 2 min); footshock (0.2 mA, five shocks over 5 min); conditioned fear (animals placed in a footshock chamber for 5 min, 24 h after footshock); restraint (5 min); intraperitoneal (i.p.) injection of recombinant human interleukin-1α (rHu-IL-1α, 20 µg/kg); and injection of cocaine hydrochloride (20 mg/kg, i.p.). As previously shown, 8-OH-DPAT was able to attenuate the adrenocortical response to acoustic stress, conditioned fear, rHu-IL-1α, and cocaine administration. Cocaine decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT and dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratios and norepinephrine (NE) concentration in the prefrontal cortex, hypothalamus, and brainstem in all experiments, and 8-OH-DPAT reversed the changes in DOPAC/DA ratio without affecting 5-HIAA/5-HT ratios or NE content. 8-OH-DPAT alone had no effect on these parameters, although it decreased NE content in the prefrontal cortex in several experiments, and in the brainstem in one experiment. Significant decreases in NE content were observed in some brain regions following some of the stressors, but these changes were not generally affected by 8-OH-DPAT. Increases in the 5-HIAA/5-HT and DOPAC/DA ratios were also observed in some brain sites following some stressors, but these changes were not affected by 8-OH-DPAT except in the case of the increased 5-HIAA/5-HT ratio in the prefrontal cortex following the conditioned fear response. These results indicate that although 8-OH-DPAT is able to decrease plasma corticosterone responses following acoustic stress, conditioned fear, rHu-IL-1α, and cocaine administration, these effects do not appear to be related to an action of the 5-HT1A agonist on biogenic amine metabolism. This observation indicates that the predominant effect of 8-OH-DPAT on adrenocortical responses is mediated at postsynaptic sites not involved in the regulation of cerebral biogenic amine metabolism.  相似文献   

4.
The effects of tryptophan administration on neurochemical estimates of synthesis [5-hydroxytryptophan (5-HTP) accumulation following administration of a decarboxylase inhibitor], storage [5-hydroxytryptamine (5-HT) concentrations], and metabolism [5-hydroxyindoleacetic acid (5-HIAA) concentrations] of 5-HT in selected regions of the hypothalamus were determined using HPLC coupled to an electrochemical detector. Tryptophan methyl ester HCl (30-300 mg/kg i.p.) produced a dose-dependent increase in the rate of 5-HTP accumulation throughout the hypothalamus but had no effect on the rate of accumulation of 3,4-dihydroxyphenylalanine. Peak 5-HTP levels were attained by 30 min following administration of tryptophan (100 mg/kg i.p.) and were maintained for an additional 60 min. Tryptophan also produced concomitant dose-dependent increases in 5-HT and 5-HIAA concentrations in these same regions without changes in the 5-HIAA/5-HT ratio. These results indicate that exogenous tryptophan administration selectively increases the synthesis, storage, and metabolism of 5-HT in the hypothalamus without altering the synthesis of catecholamines. Inhibition of 5-HT uptake with chlorimipramine or fluoxetine produced modest (10-40%) reductions in 5-HIAA concentrations throughout the hypothalamus, revealing that only a minor portion of 5-HIAA is derived from released and recaptured 5-HT, whereas the major portion of this metabolite reflects intraneuronal metabolism of unreleased 5-HT. In both chlorimipramine- and fluoxetine-treated rats, 5-HIAA concentrations were significantly increased by tryptophan administration, indicating that the increase in synthesis of 5-HT following precursor loading is accompanied by an increase in the intraneuronal metabolism of 5-HT.  相似文献   

5.
Effects of DSP-4 on noradrenaline (NA), 3-methoxy-4-hydroxyphenyl glycol (MHPG), serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) levels and on beta adrenoceptor binding kinetics (Bmax and KD) in rat hippocampus, cortex and hypothalamus were studied between 24 hours and 14 days after systemic administration. Beta adrenoceptor numbers in hippocampus and cortex, but not in hypothalamus, were significantly increased after DSP-4. No significant changes in KD values were observed in hypothalamus, but significant increases in this parameter were measured in hippocampus and cortex. NA and MHPG levels were significantly decreased in all three brain regions, but MHPG/NA ratios were increased in hippocampus, decreased in cortex and unchanged in hypothalamus. Very prominent increases in 5-HIAA levels were observed in all three brain regions, but only at one day after DSP-4. The greatest increases in 5-HIAA levels occurred in the hippocampus, but this effect of DPS-4 appeared to be slightly diminished by pre-treatment with fluoxetine. In cortex and hippocampus 5-HT levels were slightly, but significantly decreased after DSP-4.  相似文献   

6.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

7.
Experimental acute liver ischemia in pigs induces an increment in plasma free tryptophan with decreased total tryptophan. Brain tryptophan is elevated in all brain areas. A slight, but significant increase of brain serotonin is demonstrated in the striatum only, while 5-HIAA (5-hydroxyindoleacetic acid) is significantly lower in the hypothalamus. Other brain areas do not show significant changes in serotonin and 5-HIAA levels. Neither the high plasma free tryptophan levels, nor the decreased sum of neutral competitive amino acids are consistent with such an elevation of brain tryptophan. Hemodialysis was carried out with two different kinds of membranes: cuprophan (with an efficient removal of molecules up to molecular weight 1300) and AN 69 polyacrylonitrile (efficient removal up to 15,000). Ammonia and aminoacid clearance are similar for both membranes. After AN 69, plasmatic free tryptophan and brain tryptophan are lower than after liver devascularization, but still higher than normal. Serotonin significantly increases in the cortex, midbrain and hypothalamus without concomitant rise of 5-HIAA levels. After cuprophan hemodialysis, plasma total tryptophan is lower than in normal and even comatose animals, whereas free tryptophan is normal. Intracerebral tryptophan is similar to AN 69 dialysed animals, but in the hypothalamus it is similar to nondialysed animals. Brain serotonin levels are not modified. 5-HIAA decreases in the hypothalamus. This finding suggests that middle molecules (which are not cleared out with cuprophan hemodialysis) are involved in the intracerebral transfer of tryptophan and the metabolism of serotonin, mainly in the hypothalamus.  相似文献   

8.
The action of 1.0 and 10.0 mg/kg (i.p.) of corticosterone on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents and on serotonin turnover, measured by an MAO-inhibitor method, was studied at 30 and 120 min after administration. A 1.0 mg/kg dose of corticosterone increased the serotonin content and turnover in the hypothalamus and mesencephalon 30 min after administration; however, it was ineffective on dorsal hippocampus and frontal and parietal cortex. 5-HIAA content did not change significantly in any of the brain areas studied. A 10.0 mg/kg dose of corticosterone decreased the serotonin content and turnover in the hypothalamus and mesencephalon; it was ineffective in other brain areas investigated. 5-HIAA content significantly decreased in the hypothalamus while it increased in the mesencephalon and dorsal hippocampus. In the parietal and frontal cortex, 5-HIAA content did not change following administration of 10.0 mg/kg of corticosterone. At 120 min after corticosterone administration, neither 5-HT content and turnover nor 5-HIAA content showed any change in the brain areas investigated. The results suggest that corticosteroids might change the activity of the brain serotoninergic system in a dose- and time-dependent manner, and in this way the serotoninergic system might play an important role in mediation of the corticosteroid effect exerted on brain function.  相似文献   

9.
The effects of phencyclidine (PCP) on the levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in discrete brain areas of mouse were investigated. Following a single administration, PCP significantly increased at 60 min the level of 5-HT but not 5-HIAA in the cortex. However, acute administration of PCP induced no changes of 5-HT and 5-HIAA levels in other brain areas investigated. On the other hand, chronic treatment of PCP produced a significant increase the striatal 5-HT and 5-HIAA levels by about 30% and 20%, respectively. These increased levels were gradually returned to the control levels, and there was no difference of these levels between the control group and the 48 hr withdrawal group. The changes of 5-HT level in the hypothalamus were similar to those in the striatum. These results suggest that the pharmacological actions of PCP and tolerance development to PCP may be related to the functional changes of serotonergic neuronal activity.  相似文献   

10.
Sprague-Dawley rats were stressed by immobilization from 30 to 300 minutes and the effects on serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA) content were determined in the cerebral cortex, diencephalon, striatum, hippocampus and the brain stem. In a subsequent study 5-HT turnover rate in these brain areas was estimated by measuring 5-HIAA accumulation 0, 30, 60 and 90 minutes after probenecid. The content of 5-HIAA and the turnover rate of 5-HT were significantly increased in the cerebral cortex shortly after the onset of immobilization. The content of 5-HIAA in the brainstem was increased by immobilization although 5-HT turnover rate was not increased. Short term increases in 5-HIAA content were observed in the striatum and hippocampus. However, no significant changes in 5-HT turnover rate were observed in either of these 2 brain areas. Immobilization did not affect 5-HIAA content or 5-HT turnover in the diencephalon. The sensitivity of the serotonergic system in the cerebral cortex to immobilization stress suggests that this brain region could be used in future studies of the interrelationships between stress and the brain serotonergic system.  相似文献   

11.
Using a specific and sensitive high pressure liquid chromatographic technique for the measurement of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and tryptophan (TRP), we found that there were no changes in 5-HT or 5-HIAA in the rat cortex when left in situ for 6 h at room temperature or 24 h at 4 degrees C. Only a minimal 14% increase in 5-HT was observed after 24 h at 4 degrees C in the striatum of the same animals. Concentrations of TRP, however, were increased significantly in both brain regions by these postmortem delay procedures. A second study revealed that there were significant regional 5-HT and 5-HIAA concentration differences within the cerebral cortex. The frontal cortex was shown to have the highest concentrations of 5-HT and 5-HIAA. Further, within the frontal cortex, 5-HIAA levels varied, showing apparent progressive rostral to caudal increases. 5-HT concentrations, however, remained constant within the frontal cortex. These results are discussed in reference to the conflicting reports of the previous human suicide and postmortem studies.  相似文献   

12.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

13.
The brain concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased in rats maintained on restricted volume of low-protein or normal-protein diet, whereas these two agents decreased in rats fed low-protein diet ad libitum. In these two food-restricted groups brain 5-HT and 5-HIAA concentrations were not correlated with brain tryptophan hydroxylase activity, but the concentrations correlated closely with cerebral tryptophan concentrations. The cerebral tryptophan concentration in the two food-restricted groups was not consistent with the total or free tryptophan concentration in plasma. In these restricted rats cerebral tryptophan concentration was elevated, and, unlike the plasma tryptophan, it showed no diurnal variation. These results suggested that tryptophan uptake into the brain from plasma was enhanced by limiting food volume intake. Tryptophan uptake was increased by glucagon injection without changing the plasma tryptophan level, but injection of hydrocortisone or insulin had little or no effect on tryptophan concentration in either the plasma or brain.d-Glucose injection elevated plasma tryptophan concentration but decreased brain tryptophan concentration.  相似文献   

14.
Liver dysfunction was produced in rats by surgical portocaval anastomosis (PCA), and the time-course of changes in brain tryptophan and 5-HT metabolism studied in relation to plasma changes possibly influencing brain tryptophan concentration. Brain tryptophan and 5-hydroxyindolylacetic acid (5-HIAA) levels were increased greatly and maximally on the day after PCA and remained high. 5-HT changes were less marked but had a similar time-course. Plasma total tryptophan was little changed but plasma free tryptophan was raised. The latter change showed a similar time-course to that of brain tryptophan but was not large enough to account completely for it. Sham operation was followed by significant but transient increases in plasma free tryptophan, brain tryptophan and 5-HIAA but these were much smaller than after PCA. Brain tryptophan did not correlate with plasma total tryptophan either in control or PCA rats but it correlated significantly with plasma free tryptophan in both groups. However brain levels were much higher in PCA rats than in controls with similar plasma free tryptophan levels at all times from the first day after operation. The increase of brain tryptophan in anastomosed rats not accounted for by plasma free tryptophan was explained neither by insulin changes nor by an increase of the insulin/glucagon ratio nor by changes in plasma concentrations of those amino acids which compete with tryptophan for entry into brain. The results therefore indicate an unknown influence on brain tryptophan concentration in PCA rats. As tyrosine changes in brain and plasma after PCA were very similar to those of tryptophan this influence may not be specific to tryptophan. Results suggest that under the conditions used brain tryptophan concentrations of both PCA and control rats are more influenced by changes of plasma free tryptophan concentration than by changes of plasma concentrations of competing amino acids.  相似文献   

15.
The effects of clofibrate administration (200 mg/kg, po) on somatic growth, plasma levels of lipids, tryptophan, growth hormone (GH), and prolactin (PRL), as well as on brain concentrations of tryptophan and 5-hydroxytryptamine (5-HT) were studied in prepubertal male rats. The drug did not significantly alter ponderal growth, but an appreciable reduction of tail length was observed in rats treated for 30 days. Triglyceride concentrations in plasma showed a 43% diminution after 30 days of treatment, whereas free fatty acid (FFA) levels were not modified. Clofibrate administration for 7, 15, or 30 days caused a fall in total tryptophan and a significant increase of the free fraction in plasma with no change in brain tryptophan levels. Brain 5-HT was generally unaffected but a marked elevation of this parameter was noted in rats treated for 15 days. Plasma GH and PRL concentrations remained unaltered. It may be concluded from these findings that the slight reduction of somatic growth, the diminution of triglycerides, and the increase of free tryptophan in plasma, induced by chronic clofibrate treatment, are not associated with variations in brain tryptophan and 5-HT levels or with modifications of plasma GH and PRL titers.  相似文献   

16.
Stressful treatments and immune challenges have been shown previously to elevate brain concentrations of tryptophan. The role of the autonomic nervous system in this neurochemical change was investigated using pharmacological treatments that inhibit autonomic effects. Pretreatment with the ganglionic blocker chlorisondamine did not alter the normal increases in catecholamine metabolites, but prevented the increase in brain tryptophan normally observed after footshock or restraint, except when the duration of the footshock period was extended to 60 min. The footshock- and restraint-related increases in 5-hydroxyindoleacetic acid (5-HIAA) were also prevented by chlorisondamine. The increases in brain tryptophan caused by intraperitoneal injection of endotoxin or interleukin-1 (IL-1) were also prevented by chlorisondamine pretreatment. The footshock-induced increases in brain tryptophan and 5-HIAA were attenuated by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phenoxybenzamine or the muscarinic cholinergic antagonist atropine. Thus the autonomic nervous system appears to be involved in the stress-related changes in brain tryptophan, and this effect is due to the sympathetic rather than the parasympathetic limb of the system. Moreover, the main effect of the sympathetic nervous system is exerted on beta- as opposed to alpha-adrenergic receptors. We conclude that activation of the sympathetic nervous system is responsible for the stress-related increases in brain tryptophan, probably by enabling increased brain tryptophan uptake. Endotoxin and IL-1 also elevate brain tryptophan, presumably by a similar mechanism. The increase in brain tryptophan appears to be necessary to sustain the increased serotonin catabolism to 5-HIAA that occurs in stressed animals, and which may reflect increased serotonin release.  相似文献   

17.
Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in rat brain were analysed 24 hours after 7-, 15-, 29- days lithium hydroxybutyrate (LH) injections (10 mg/kg daily). After 7 days the drug reduced 5-HT in hypothalamus and 5-HIAA in the mid brain by 35%. After 15 days LH decreased 5-HT in striatum, hypothalamus by 32 and 17% and 5-HIAA in thalamus, hypothalamus by 28 and 44% respectively. After 29 days LH diminished 5-HT in striatum, hippocampus, amygdala by 24, 29 and 32% and 5-HIAA--in hypothalamus by 42%. The role of adaptative changes and stabilization processes in the central serotoninergic system in mechanism of LH psychotropic effects is discussed.  相似文献   

18.
The injection of caffeine (100 mg/kg, i.p.) into male rats acutely increased brain levels of trytophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). Blood levels of glucose, nonesterified fatty acids (NEFA) and insulin also increased, while those of the aromatic and branched-chain amino acids fell. Serum tryptophan levels either did not fall, or increased. Consequently, the serum ratio of trypthopahn to the sum of other large neutral amino acids (LNAA) increased. Less consistently noted were increases in serum free tryptophan levels. Brain tyrosine levels were not appreciably altered by caffeine, nor was the serum tyrosine ratio. In dose-response studies, 25 mg/kg of caffeine was the minimal effective dose needed to raise brain tryptophan, but only the 100 mg/kg dose elevated all three indoles in brain. In no experiments did caffeine, at any time or dose, alter brain levels of dopamine or norepinephrine. Caffeine thus probably raises brain tryptophan levels by causing insulin secretion, and thereby changing plasma amino acid levels to favor increased tryptophan uptake into brain. The rises in brain 5-HT and 5-HIAA may follow from the increase in brain tryptophan, although further data are required clearly to establish such a mechanism.  相似文献   

19.
1. The effect was examined of a single bout of nonexhaustive endurance exercise on tryptophan (Try), serotonin (5-HT), 5-hydroxyindolacetic acid (5-HIAA), and tryptophan hydroxylase (TpH) levels in different parts of rat brain (brain cortex, cerebellum, hypothalamus, midbrain striatum, medulla) on the last day of endurance training and 48 h later (detraining period).2. Female rats were subjected to a 6-week endurance training programme. The effectiveness of the training was evaluated by measuring anaerobic threshold (AT). High performance liquid chromatography (HPLC) was used to determine regional Try, 5-HT, and 5-HIAA contents in the brain, and thin layer chromatography followed by gas-liquid chromatography was used to determine blood levels of free fatty acids. Regional TpH levels were measured by Western blot analysis.3. In the two rat groups subjected to endurance training, in all brain regions studied but cerebellum, 5-HT content was significantly lower after the last bout of nonexhaustive endurance exercise than in resting control rats that were not subjected to the training. Similarly, the cortical and striatal, but not cerebellar, 5-HT/Try ratios were significantly lower in the trained rats at the end of the last training session and at the end of a single bout of nonexhaustive exercise administered after a 48-h detraining period than in the controls. TpH protein level was decreased by 15–25% after the last bout of exercise either during the training process or after the and 1 h bout of endurance exercise performed 48 h after cessation of endurance training in brain cortex and striatum but not cerebellar.4. These results indicate that the reduction in 5-HT level was the adaptive response to endurance training. The lowered 5-HT/Try ratio and lowered TpH protein level attained after the training process suggests and that this change may be, at least partially, attributed to downregulation of TpH activity.  相似文献   

20.
Baltic salmon Salmo salar females displaying wiggling behaviour had significantly lower (P<0.05) hepatic and ovarian thiamine (vitamin B1) concentrations than the normal females, confirming that they suffered from a thiamine deficiency. A significantly (P<0.05) increased monoaminergic activity was found in the telencephalon and the hypothalamus of the wiggling individuals as indicated by [5-hydroxyindoleacetic acid (5-HIAA)]: [5-hydroxytryptamine (5-HT)] and [3,4-dihydroxyphenylacetic acid (DOPAC)]: [dopamine (DA)] ratios. The 5-HIAA concentrations of wiggling individuals were significantly (P<0.05) higher in the telencephalon and the hypothalamus compared to normal fish. Wiggling fish showed significantly (P<0.05) higher concentrations of the DA metabolite DOPAC in the hypothalamus and the brain stem compared to normal fish. Furthermore, the brain stem in wiggling fish contained significantly (P<0.05) less 5-HT than in normal individuals, which was also reflected in a significant (P<0.05) increase in the (5-HIAA): (5-HT) ratio. These results demonstrate an increased serotonergic and dopaminergic activity in wiggling compared to normal fish. The altered monoaminergic activity may be directly related to altered brain thiamine metabolism, but a general stress caused by thiamine deficiency and an inability to regulate swim bladder inflation may contribute. Furthermore, a changed brain monoaminergic activity may contribute to the behaviour characterizing wiggling fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号