首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An effort has been made for the first time in Asia's largest brackish water lagoon, Chilika, to investigate the spatio-temporal variability in primary productivity (PP), bacterial productivity (BP), bacterial abundance (BA), bacterial respiration (BR) and bacterial growth efficiency (BGE) in relation to partial pressure of CO2 (pCO2) and CO2 air–water flux and the resultant trophic switchover. Annually, PP ranged between 24 and 376 µg C L?1 d?1 with significantly low values throughout the monsoon (MN), caused by light limitation due to inputs of riverine suspended matter. On the contrary, BP and BR ranged from 11.5 to 186.3 µg C L?1 d?1 and from 14.1 to 389.4 µg C L?1 d?1, respectively, with exceptionally higher values during MN. A wide spatial and temporal variation in the lagoon trophic status was apparent from BP/PP (0.05–6.4) and PP/BR (0.10–18.2) ratios. The seasonal shift in net pelagic production from autotrophy to heterotrophy due to terrestrial organic matter inputs via rivers, enhanced the bacterial metabolism during the MN, as evident from the high pCO2 (10,134 µatm) and CO2 air–water flux (714 mm m?2 d?1). Large variability in BGE and BP/PP ratios especially during MN led to high bacteria-mediated carbon fluxes which was evident from significantly high bacterial carbon demand (BCD >100% of PP) during this season. This suggested that the net amount of organic carbon (either dissolved or particulate form) synthesized by primary producers in the lagoon was not sufficient to satisfy the bacterial carbon requirements. Lagoon sustained low to moderate autotrophic–heterotrophic coupling with annual mean BCD of 231% relative to the primary production, which depicted that bacterioplankton are the mainstay of the lagoon biogeochemical cycles and principal players that bring changes in trophic status. Study disclosed that the high CO2 supersaturation and oxygen undersaturation during MN was attributed to the increased heterotrophic respiration (in excess of PP) fuelled by allochthonous organic matter. On a spatial scale, lagoon sectors such as south sector, central sector and outer channel recorded “net autotrophic,” while the northern sector showed “net heterotrophic” throughout the study period.  相似文献   

2.
Bacterioplankton production in freshwater Antarctic lakes   总被引:5,自引:0,他引:5  
1. Bacterioplankton production was measured in the water columns of two ultra‐oligotrophic, freshwater Antarctic lakes (Crooked Lake and Lake Druzhby) during an annual cycle. In both lakes bacterial production, measured by the incorporation of [3H] thymidine, continued in winter and showed a cycle over the year. The range of production was between 0 and 479 ng C L?1 h?1 in Crooked Lake and 0–354 ng L?1 h?1 in Lake Druzhby. 2. Abundance and mean cell volume both varied, producing marked changes in biomass during the year, with highest biomass occurring in the winter and early spring. Biomass showed similar seasonal trends in both lakes. 3. For most of the year inorganic forms of nitrogen and phosphorus were detectable in the water columns of the lakes and were unlikely to have limited bacterial production. Dissolved organic carbon (DOC) was below 3000 μg L?1. Dissolved amino acids and carbohydrates contributed 5–25% of the DOC pool in Crooked Lake and 5–64% in Lake Druzhby. Dissolved carbohydrates were consistently low, suggesting that this may have been the preferred carbon substrate for bacterioplankton. 4. Aggregate associated bacteria had higher mean cell volume, abundances and production than freely suspended bacteria in Lake Druzhby, while in Crooked Lake aggregate associated bacteria consistently had higher mean cell volumes than free bacteria, but abundance and production were on occasion higher in free bacteria compared with aggregate associated communities. 5. The data indicated that production is limited by continuous low temperatures and the limited availability of suitable DOC substrate. However, the bacterioplankton functions year round, responding to factors other than temperature.  相似文献   

3.
New Zealand ephemeral wetlands are ecologically important, containing up to 12% of threatened native plant species and frequently exhibiting conspicuous cyanobacterial growth. In such environments, cyanobacteria and associated heterotrophs can influence primary production and nutrient cycling. Wetland communities, including bacteria, can be altered by increased nitrate and phosphate due to agricultural practices. We have characterized cyanobacteria from the Wairepo Kettleholes Conservation Area and their associated bacteria. Use of 16S rRNA amplicon sequencing identified several operational taxonomic units (OTUs) representing filamentous heterocystous and non‐heterocystous cyanobacterial taxa. One Nostoc OTU that formed macroscopic colonies dominated the cyanobacterial community. A diverse bacterial community was associated with the Nostoc colonies, including a core microbiome of 39 OTUs. Identity of the core microbiome associated with macroscopic Nostoc colonies was not changed by the addition of nutrients. One OTU was highly represented in all Nostoc colonies (27.6%–42.6% of reads) and phylogenetic analyses identified this OTU as belonging to the genus Sphingomonas. Scanning electron microscopy showed the absence of heterotrophic bacteria within the Nostoc colony but revealed a diverse community associated with the colonies on the external surface.  相似文献   

4.
Total root production (∑P), total root loss (∑L), net root production. (NP), and biomass production were determined for seedlings of Betula papyrifera and Acer rubrum in ambient and elevated CO2 environments. ∑P, ∑L, and NP were calculated from sequential, independent observations of root length production through plexiglass windows. Elevated CO2 increased ∑P, ∑L, and NP in seedlings of Betula papyrifera but not Acer rubrum. Root production and loss were qualitatively similar to whole-plant growth responses to elevated CO2. Betula showed enhanced ∑P, ∑L, and biomass with elevated CO2 but Acer did not. However, the observed effects of CO2 on root production and loss did not alter the allometric relationship between root production and root loss for either Acer or Betula. Thus, in this experiment, elevated CO2 did not affect the relationship between root production and root loss. The results of this study have important implications for the potential effects of elevated CO2 on root dynamics. Elevated CO2 may lead to increases in root production and in root loss (turnover) where the changes in root turnover are largely a function of the magnitude of root production increases.  相似文献   

5.
CO2exchange in the leafy and skeletal parts of attached shoots of Pinus sylvestrisL. was measured with an infrared gas-analyzer in an open differential system during daylight hours. The 14CO2assimilation rates in the leafy parts of shoots and 14CO2evolution from current photosynthetic products in the lower skeletal part of shoots were measured in afternoons. Chlorophyll content was measured in the needles of the same shoot. The carbon of exported assimilates contributed only about 4% to CO2exchange in the heterotrophic tree tissues. Only this component of CO2evolution from the surface of the skeletal part of the tree was related to the losses of the net primary photosynthetic production (NPP) in the aboveground part of the pine stand during the current growth period.  相似文献   

6.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

7.
Daily integrals of photosynthesis by a cyanobacterial bloom in the Baltic Sea, during the summer of 1993, were calculated from the vertical distributions of light, temperature and the organisms in the water column and from photosynthesis/irradiance curves of picoplanktonic and diazotrophic cyanobacteria isolated from the community. The distribution of chlorophyll a in size-classes <20?µm and >20?µm was monitored over 9 days that included a deep mixing event followed by calm. Picocyanobacteria formed 70% of the cyanobacterial biomass and contributed 56% of the total primary production. Of the filamentous diazotrophs that formed the other 30%, Aphanizomenon contributed 28% and a Nodularia-containing fraction 16% of the primary production. For the whole population there was little change in standardized photosynthetic O2 production, which remained at about 31?mmol?m?2 before and after the mixing event. There were differences, however, between the classes of cyanobacteria: in picocyanobacteria primary production hardly changed, while in Aphanizomenon it increased by 2.6 and in Nodularia it fell below zero. Total phytoplankton photosynthesis was strongly dependent on total daily insolation with the compensation point at a photon insolation of 22.7?mol?m?2?d?1. Similar analyses of N2 fixation showed much less dependence on depth distribution of light and biomass: Aphanizomenon fixed about twice as much N2 as Nodularia their; their fixation exceeded their own N demand by about 12%. Together, these species contributed 49% of the total N demand of the phytoplankton population. Computer models based on the measured light attenuation and photosynthetic coefficients indicate that growth of the cyanobacterial population could occur only in the summer months when the critical depth of the cyanobacteria exceeds the depth of mixing.  相似文献   

8.
The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS‐production and data on growth, DMSP and DMS concentrations in pH‐stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2), elevated temperature (+T) and elevated temperature and CO2 (+TCO2). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L?1 cell volume (CV) h?1 in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L?1 CV h?1). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6–6.1 mmol L?1 CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L?1 CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L?1 CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in decreased DMS as suggested by earlier studies investigating the effect of elevated CO2 in isolation.  相似文献   

9.
Feeding microbial communities with both organic and inorganic substrates can improve sustainability and feasibility of chain elongation processes. Sustainably produced H2, CO2, and CO can be co-fed to microorganisms as a source for acetyl-CoA, while a small amount of an ATP-generating organic substrate helps overcome the kinetic hindrances associated with autotrophic carboxylate production. Here, we operated two semi-continuous bioreactor systems with continuous recirculation of H2, CO2, and CO while co-feeding an organic model feedstock (lactate and acetate) to understand how a mixotrophic community is shaped during carboxylate production. Contrary to the assumption that H2, CO2, and CO support chain elongation via ethanol production in open cultures, significant correlations (p < 0.01) indicated that relatives of Clostridium luticellarii and Eubacterium aggregans produced carboxylates (acetate to n-caproate) while consuming H2, CO2, CO, and lactate themselves. After 100 days, the enriched community was dominated by these two bacteria coexisting in cyclic dynamics shaped by the CO partial pressure. Homoacetogenesis was strongest when the acetate concentration was low (3.2 g L−1), while heterotrophs had the following roles: Pseudoramibacter, Oscillibacter, and Colidextribacter contributed to n-caproate production and Clostridium tyrobutyricum and Acidipropionibacterium spp. grew opportunistically producing n-butyrate and propionate, respectively. The mixotrophic chain elongation community was more efficient in carboxylate production compared with the heterotrophic one and maintained average carbon fixation rates between 0.088 and 1.4 g CO2 equivalents L−1 days−1. The extra H2 and CO consumed routed 82% more electrons to carboxylates and 50% more electrons to carboxylates longer than acetate. This study shows for the first time long-term, stable production of short- and medium-chain carboxylates with a mixotrophic community.  相似文献   

10.
We compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden. Modelled NPP declined strongly with altitude and annual air temperature decreases along the altitude gradient (6°C between the warmest and the coldest catchment). Estimated terrestrial DOC export to the lakes was closely correlated to NPP. Heterotrophic bacterial production (BP) and respiration (BR) were mainly based on terrestrial organic carbon and strongly correlated with the terrestrial DOC export. Excess respiration over PP of the pelagic system was similar to net emission of CO2 in the lakes. BR and CO2 emission made up considerably higher shares of the terrestrial DOC input in warm lakes than in cold lakes, implying that respiration and the degree of net heterotrophy in the lakes were dependant not only on terrestrial export of DOC, but also on characteristics in the lakes which changed along the gradient and affected the bacterial metabolization of allochthonous DOC. The study showed close links between terrestrial primary production, terrestrial DOC export and bacterial activity in lakes and how these relationships were dependant on air temperature. Increases in air temperature in high latitude unproductive systems might have considerable consequences for lake water productivity and release of CO2 to the atmosphere, which are ultimately determined by terrestrial primary production.  相似文献   

11.
We measured sediment production of carbon dioxide (CO2) and methane (CH4) and the net flux of CO2 across the surfaces of 15 boreal and subarctic lakes of different humic contents. Sediment respiration measurements were made in situ under ambient light conditions. The flux of CO2 between sediment and water varied between an uptake of 53 and an efflux of 182 mg C m−2 day−1 from the sediments. The mean respiration rate for sediments in contact with the upper mixed layer (SedR) was positively correlated to dissolved organic carbon (DOC) concentration in the water (r2 = 0.61). The net flux of CO2 across the lake surface [net ecosystem exchange (NEE)] was also closely correlated to DOC concentration in the upper mixed layer (r2 = 0.73). The respiration in the water column was generally 10-fold higher per unit lake area compared to sediment respiration. Lakes with DOC concentrations <5.6 mg L−1 had net consumption of CO2 in the sediments, which we ascribe to benthic primary production. Only lakes with very low DOC concentrations were net autotrophic (<2.6 mg L−1) due to the dominance of dissolved allochthonous organic carbon in the water as an energy source for aquatic organisms. In addition to previous findings of allochthonous organic matter as an important driver of heterotrophic metabolism in the water column of lakes, this study suggests that sediment metabolism is also highly dependent on allochthonous carbon sources.  相似文献   

12.
Nitrogen (N) and phosphorus (P) over-enrichment has accelerated eutrophication and promoted cyanobacterial blooms worldwide. The colonial bloom-forming cyanobacterial genus Microcystis is covered by sheaths which can protect cells from zooplankton grazing, viral or bacterial attack and other potential negative environmental factors. This provides a competitive advantage over other phytoplankton species. However, the mechanism of Microcystis colony formation is not clear. Here we report the influence of N, P and pH on Microcystis growth and colony formation in field simulation experiments in Lake Taihu (China). N addition to lake water maintained Microcystis colony size, promoted growth of total phytoplankton, and increased Microcystis proportion as part of total phytoplankton biomass. Increases in P did not promote growth but led to smaller colonies, and had no significant impact on the proportion of Microcystis in the community. N and P addition together promoted phytoplankton growth much more than only adding N. TN and TP concentrations lower than about TN 7.75–13.95 mg L−1 and TP 0.41–0.74 mg L−1 mainly promoted the growth of large Microcystis colonies, but higher concentrations than this promoted the formation of single cells. There was a strong inverse relationship between pH and colony size in the N&P treatments suggesting CO2 limitation may have induced colonies to become smaller. It appears that Microcystis colony formation is an adaptation to provide the organisms adverse conditions such as nutrient deficiencies or CO2 limitation induced by increased pH level associated with rapidly proliferating blooms.  相似文献   

13.
Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO4 3− 1.80 μmol L−1 and NO3 27.64 μmol L−1) was found between 70 and 200 m depth. Chlorophyll-a (Chl-a) values (max 14.24 μg L−1) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m−3 day−1. Pc was significantly correlated with total diatom abundance and Chl-a. Calculated ΔpCO2 (difference of the CO2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO2 flux from the atmosphere to the sea and suggests the area has been a CO2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO2 pumping.  相似文献   

14.
Mass culture of microalgae is a potential alternative to cultivation of terrestrial crops for bioenergy production. However, microalgae require nitrogen fertiliser in quantities much higher than plants, and this has important consequences for the energy balance of these systems. The effect of nitrogen fertiliser supplied to microalgal bubble-column photobioreactor cultures was investigated using different nitrogen sources (nitrate, urea, ammonium) and culture conditions (air, 12% CO2). In 20 L cultivations, maximum biomass productivity for Chlorella vulgaris cultivated using nitrate and urea was 0.046 and 0.053 g L−1 day−1, respectively. Maximum biomass productivity for Dunaliella tertiolecta cultivated using nitrate, urea and ammonium was 0.033, 0.038 and 0.038 g L−1 day−1, respectively. In intensive bubble-column photobioreactors using 12% CO2, maximum productivity reached 0.60 and 0.83 g L−1 day−1 for C. vulgaris and D. tertiolecta, respectively. Recycling of nitrogen within the photobioreactor system via algal exudation of nitrogenous compounds and bacterial activity was identified as a potentially important process. The energetic penalty incurred by supply of artificial nitrogen fertilisers, phosphorus, power and CO2 to microalgal photobioreactors was investigated, although analysis of all energy burdens from biomass production to usable energy carriers was not conducted. After subtraction of the power, nitrogen and phosphorus energy burdens, maximum net energy ratios for C. vulgaris and D. tertiolecta cultivated in bubble columns were 1.82 and 2.10. Assuming CO2 was also required from a manufactured source, the net energy ratio decreased to 0.09 and 0.11 for C. vulgaris and D. tertiolecta, so that biomass production in this scenario was unsustainable. Although supply of nitrogen is unlikely to be the most energetically costly factor in sparged photobioreactor designs, it is still a very significant penalty. There is a need to optimise both cultivation strategies and recycling of nitrogen in order to improve performance. Data are supported by measurements including biochemical properties (lipid, protein, heating value) and bacterial number by epifluorescence microscopy.  相似文献   

15.
1. Five oligotrophic clear‐water lakes on the Faroe Islands were studied during August 2000. Algal and bacterial production rates, community respiration, and CO2 saturation were determined. In addition, we examined the plankton community composition (phytoplankton and heterotrophic nanoflagellates) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6–33.2) and supersaturation of CO2 (830–2140 μatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17–83%), possibly as a result of their capacity to exploit bacteria as a means of acquiring nutrients in these nutrient poor systems.  相似文献   

16.
The interannual net primary production variation and trends of a Picea schrenkiana forest were investigated in the context of historical changes in climate and increased atmospheric CO2 concentration at four sites in the Tianshan Mountain range, China. Historical changes in climate and atmospheric CO2 concentration were used as Biome–BGC model drivers to evaluate the spatial patterns and temporal trends of net primary production (NPP). The temporal dynamics of NPP of P. schrenkiana forests were different in the western, middle and eastern sites of Tianshan, which showed substantial interannual variation. Climate changes would result in increased NPP at all study sites, but only the change in NPP in the western forest (3.186 gC m−2 year−1, P < 0.05) was statistically significant. Our study also showed a higher increase in the air temperature, precipitation and NPP during 1987–2000 than 1961–1986. Statistical analysis indicates that changes in NPP are positively correlated with annual precipitation (R = 0.77–0.92) but that NPP was less sensitive to changes in air temperature. According to the simulation, increases in atmospheric CO2 increased NPP by improving the water use efficiency. The results of this study show that the Tianshan Mount boreal forest ecosystem is sensitive to historical changes in climate and increasing atmospheric CO2. The relative impacts of these variations on NPP interact in complex ways and are spatially variable, depending on local conditions and climate gradients. W. Sang and H. Su contributed equally to this paper, arranged in alphabetical order by surnames.  相似文献   

17.
In order to develop an effective CO2 mitigation process using microalgae for potential industrial application, the growth and physiological activity of Chlorella vulgaris in photobioreactor cultures were studied. C. vulgaris was grown at two CO2 concentrations (2 and 13% of CO2 v/v) and at three incident light intensities (50, 120 and 180 μmol m?2 s?1) for 9 days. The measured specific growth rate was similar under all conditions tested but an increase in light intensity and CO2 concentration affected the biomass and cell concentrations. Although carbon limitation was observed at 2% CO2, similar cellular composition was measured in both conditions. Light limitation induced a net change in the growth behavior of C. vulgaris. Nitrogen limitation seemed to decrease the nitrogen quota of the cells and rise the intracellular carbon:nitrogen ratio. Exopolysaccharide production per cell appeared to be affected by light intensity. In order to avoid underestimation of the CO2 biofixation rate of the microalgae, exopolysaccharide production was taken into account. The maximum CO2 removal rate (0.98 g CO2 L?1 d?1) and the highest biomass concentration (4.14 g DW L?1) were determined at 13% (v/v) CO2 and 180 μmol m?2 s?1. Our results show that C. vulgaris has a real potential for industrial CO2 remediation.  相似文献   

18.
Studies on biogeochemical cycling of carbon in the Chilka Lake, Asia’s largest brackish lagoon on the east coast of India, revealed, for the first time, strong seasonal and spatial variability associated with salinity distribution. The lake was studied twice during May 2005 (premonsoon) and August 2005 (monsoon). It exchanges waters with the sea (Bay of Bengal) and several rivers open into the lake. The lake showed contrasting levels of dissolved inorganic carbon (DIC) and organic carbon (DOC) in different seasons; DIC was higher by ∼22% and DOC was lower by ∼36% in premonsoon than in monsoon due to seasonal variations in their supply from rivers and in situ production/mineralisation. The DIC/DOC ratios in the lake during monsoon were influenced by physical mixing of end member water masses and by intense respiration of organic carbon. A strong relationship between excess DIC and apparent oxygen utilisation showed significant control of biological processes over CO2 production in the lake. Surface partial pressure of CO2 (pCO2), calculated using pH–DIC couple according to Cai and Wang (Limnol and Oceanogr 43:657–668, 1998), exhibited discernable gradients during monsoon through northern (1,033–6,522 μatm), central (391–2,573 μatm) and southern (102–718 μatm) lake. The distribution pattern of pCO2 in the lake seems to be governed by pCO2 levels in rivers and their discharge rates, which were several folds higher during monsoon than premonsoon. The net CO2 efflux, based on gas transfer velocity parameterisation of Borges et al. (Limnol and Oceanogr 49(5):1630–1641, 2004), from entire lake during monsoon (141 mmolC m−2 d−1 equivalent to 2.64 GgC d−1 at basin scale) was higher by 44 times than during premonsoon (9.8 mmolC m−2 d−1 ≈ 0.06 GgC d−1). 15% of CO2 efflux from lake in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (−308 mmolC m−2 d−1 ≈ −3.77 GgC d−1) was found to be almost in consistent with the total riverine organic carbon trapped in the lake (229 mmolC m−2 d−1 ≈ 2.80 GgC d−1) suggesting that the strong heterotrophy in the lake is mainly responsible for elevated fluxes of CO2 during monsoon. Further, the pelagic net community production represented 92% of NEP and benthic compartment plays only a minor role. This suggests that Chilka lake is an important region in biological transformation of organic carbon to inorganic carbon and its export to the atmosphere.  相似文献   

19.
Transfer of N2 and CO2 fixation products from the bloom forming blue-green alga, Anabaena oscillarioides Bory, to attached and free swimming bacteria is common during active growth of the former. Incubation with 15N2 and 14CO2 followed by size fractionation filtration reveals that: i) magnitudes of fixed N and C excretion, relative to N2 and CO2 fixation, are dictated by dissolved inorganic carbon (DIC) availability for A. oscillarioides photosynthetic production, ii) associated bacteria exhibit preferences for recently fixed excreted N compounds, iii) bacterial utilization of excreted N is independent of ambient light conditions, and iv) lag times between N2 fixation and detectable bacterial assimilation of excreted fixed N compounds are ca. 1–2 h. Both 14NH4Cl dilution and Hg(NH3)2 Cl2 precipitation techniques indicate that NH3 is a major excretion product from A. oscillarioides, particularly during DIC limited growth. Active N and C excretion and transfer to associated bacteria are features of viable A. oscillarioides filaments. Hence, transfer of these metabolites reflects complex mutualistic, and possibly symbiotic associations rather than solely signaling senescence.  相似文献   

20.
Acetobacterium woodii is known to produce mainly acetate from CO2 and H2, but the production of higher value chemicals is desired for the bioeconomy. Using chain-elongating bacteria, synthetic co-cultures have the potential to produce longer-chained products such as caproic acid. In this study, we present first results for a successful autotrophic co-cultivation of A. woodii mutants and a Clostridium drakei wild-type strain in a stirred-tank bioreactor for the production of caproic acid from CO2 and H2 via the intermediate lactic acid. For autotrophic lactate production, a recombinant A. woodii strain with a deleted Lct-dehydrogenase complex, which is encoded by the lctBCD genes, and an inserted D-lactate dehydrogenase (LdhD) originating from Leuconostoc mesenteroides, was used. Hydrogen for the process was supplied using an All-in-One electrode for in situ water electrolysis. Lactate concentrations as high as 0.5 g L–1 were achieved with the AiO-electrode, whereas 8.1 g L–1 lactate were produced with direct H2 sparging in a stirred-tank bioreactor. Hydrogen limitation was identified in the AiO process. However, with cathode surface area enlargement or numbering-up of the electrode and on-demand hydrogen generation, this process has great potential for a true carbon-negative production of value chemicals from CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号