首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. We have previously reported the cloning and characterisation of the koala CYP4A15, the first reported member of the CYP4 family from marsupials, and have demonstrated important species differences in CYP4A activity and tissue expression. In the present study, the cloning of CYP4B1 in the wallaby (Macropus eugenii) and their expression across marsupials is described. Rabbit anti-mouse CYP4B1 antibody detected immunoreactive proteins in lung and liver microsomes from all test marsupials, with relative weak signal detected from the koala, suggesting a species-specific expression. Microsomal 2-aminofluorene bio-activation (a CYP4B1 marker) in wallaby lung was comparable to that of rabbit, with significant higher activities detected in wallaby liver and kidneys compared to rabbit. A 1548 bp wallaby lung CYP4B complete cDNA, designated CYP4B1, which encodes a protein of 510 amino acids and shares 72% nucleotide and 69% amino acid sequence identity to human CYP4B1, was cloned by polymerase chain reaction approaches. The results demonstrate the presence of wallaby CYP4B1 that shares several common features with other published CYP4Bs; however the wallaby CYP4B1 cDNA contains four extra amino acid residues at the NH2-terminal, a fundamentally conserved transmembrane anchor of all eukaryote CYPs.  相似文献   

2.
Epoxidation and hydroxylation of arachidonic acid (AA) are both catalyzed by cytochromes P450s (CYPs). The oxidized metabolites are known to be involved in the regulation of vascular tone and renal function. By using a panel of 15 human recombinant CYPs, this study demonstrates that other polyunsaturated long-chain fatty acids (PUFA-LC), especially the ω3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are also epoxidised. The regioselectivity of epoxidation of four PUFA-LC by CYPs was investigated. Among the several CYPs tested, CYP2C9/2C19 and 1A2 were the most efficient in EPA and DHA epoxidations. It ensued that 10 μM of these two ω3 fatty acids decreased by more than 80% and 60%, respectively, the formation by CYP2C9 of AA-epoxidised derivatives. These findings suggest that some physiological effects of ω3 fatty acids may be due to a shift in the generation of active epoxidised metabolites of AA through CYP-mediated catalysis.  相似文献   

3.
4.
Meranzin hydrate (MH), an absorbed bioactive compound from the Traditional Chinese Medicine (TCM) Chaihu-Shugan-San (CSS), was first isolated in our laboratory and was found to possess anti-depression activity. However, the role of cytochrome P450s (CYPs) in the metabolism of MH was unclear. In this study, we screened the CYPs for the metabolism of MH in vitro by human liver microsomes (HLMs) or human recombinant CYPs. MH inhibited the enzyme activities of CYP1A2 and CYP2C19 in a concentration-dependent manner in the HLMs. The Km and Vmax values of MH were 10.3±1.3 µM and 99.1±3.3 nmol/mg protein/min, respectively, for the HLMs; 8.0±1.6 µM and 112.4±5.7 nmol/nmol P450/min, respectively, for CYP1A2; and 25.9±6.6 µM and 134.3±12.4 nmol/nmol P450/min, respectively, for CYP2C19. Other human CYP isoforms including CYP2A6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 showed minimal or no effect on MH metabolism. The results suggested that MH was simultaneously a substrate and an inhibitor of CYP1A2 and CYP2C9, and MH had the potential to perpetrate drug-drug interactions with other CYP1A2 and CYP2C19 substrates.  相似文献   

5.
Cytochrome P450 (CYP) enzymes involved in mammalian xenobiotic metabolism are attractive targets for the engineering of biocatalysts since they have broad and overlapping substrate and reaction substrate specificities. In this report, a library of chimeric mutants was prepared from CYP2C8, CYP2C9, CYP2C18 and CYP2C19 by DNA family shuffling. Twelve randomly selected clones were fully sequenced and showed 9 ± 2 crossovers and 1.5 ± 0.5 spontaneous mutations per ∼1.5 kbp open reading frame. CYP hemoprotein expression was observed in 50% (microaerobic culture) to 54% (aerobic culture) of clones. The functional diversity of the library was assessed using three luminogenic substrates, diclofenac and indole as probe substrates. A random sample of 26 clones revealed two clones with activity towards luciferin ME, one towards luciferin H and five towards diclofenac 4′-hydroxylation. One mutant showed activity towards all three substrates. Of 96 clones screened on solid media, one showed elevated indigo production compared to the parental forms. Turnover rates for luciferin ME and H metabolism by CYP2C9 and mutants were at least one order of magnitude higher in experiments with membranes compared to whole cells, consistent with impaired product egress from cells. Apparent Km values were increased in whole cell incubations with luciferin H suggesting impaired access of the substrate to the active site of the enzymes in whole cells. Finally screening with a panel of CYP2C ligands using CYP2C9 or active mutants revealed different patterns of inhibition and heteroactivation of metabolism of luciferin analogs.  相似文献   

6.
Arachidonic acid is oxidized by cytochromes P450 2C (CYP2C) to epoxyeicosatrienoic acids (EETs), possessing vasoactive properties, with 11,12-EET as the endothelium derived hyperpolarization factor. Genetic variants of CYP2C enzymes have altered drug metabolizing capacity. Our primary aim was to determine whether EET biosynthesis differed in human liver microsomes with known CYP2C genotypes. Human liver microsomes (n = 25) of different CYP2C genotypes or yeast-expressed CYP2C enzymes were used. Analysis of metabolites was performed by liquid chromatography/mass spectrometry. Samples genotyped as CYP2C8*3/*3/CYP2C9*2/*2 exhibited a 34% (p < 0.05) decreased EET biosynthesis, compared to other CYP2C8/CYP2C9 haplotypes. Inhibition experiments suggested CYP2C8 and CYP2C9 to be the predominant catalysts of EETs. We found no differences between the three recombinantly expressed CYP2C9 variants, but CYP2C8.1 had lower Km than these isoforms. In conclusion, there are genetic differences in the CYP2C-dependent oxidation of arachidonic acid to vasoactive metabolites, of which the relevance to cardiovascular pathophysiology is still unclear.  相似文献   

7.
Caffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3 mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62 mM (472 mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56 mM (280 mg/L) and 1 mM (180 mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids.  相似文献   

8.
The human cytochrome P450 (CYP) enzymes play a major role in the metabolism of endobiotics and numerous xenobiotics including drugs. Therefore it is the standard procedure to test new drug candidates for interactions with CYP enzymes during the preclinical development phase. The purpose of this study was to determine in vitro CYP inhibition potencies of a set of isoquinoline alkaloids to gain insight into interactions of novel chemical structures with CYP enzymes. These alkaloids (n = 36) consist of compounds isolated from the Papaveraceae family (n = 20), synthetic analogs (n = 15), and one commercial compound. Their inhibitory activity was determined towards all principal human drug metabolizing CYP enzymes: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4. All alkaloids were assayed in vitro in a 96-well plate format using pro-fluorescent probe substrates and recombinant human CYP enzymes. Many of these alkaloids inhibited the CYP3A4 form, with 30/36 alkaloids inhibiting CYP3A4 with at least moderate potency (IC50 < 10 μM) and 15/36 inhibiting CYP3A4 potently (IC50 < 1 μM). Among them corydine, parfumine and 8-methyl-2,3,10,11-tetraethoxyberbine were potent and selective inhibitors for CYP3A4. CYP2D6 was inhibited with at least moderate potency by 26/34 alkaloids. CYP2C19 was inhibited by 15/36 alkaloids at least moderate potently, whereas CYP1A2, CYP2B6, CYP2C8, and CYP2C9 were inhibited to a lesser degree. CYP2A6 was not significantly inhibited by any of the alkaloids. The results provide initial structure-activity information about the interaction of isoquinoline alkaloids with major human xenobiotic-metabolizing CYP enzymes, and illustrate potential novel structures as CYP form-selective inhibitors.  相似文献   

9.
BackgroundStyrax, one of the most famous folk medicines, has been frequently used for the treatment of cardiovascular diseases and skin problems in Asia and Africa. It is unclear whether Styrax or Styrax-related herbal medicines may trigger clinically relevant herb-drug interactions.PurposeThis study was carried out to investigate the inhibitory effects of Styrax on human cytochrome P450 enzymes (CYPs) and to clarify whether this herb may modulate the pharmacokinetic behavior of the CYP-substrate drug warfarin when co-administered.Study DesignThe inhibitory effects of Styrax on CYPs were assayed in human liver microsomes (HLM), while the pharmacokinetic interactions between Styrax and warfarin were investigated in rats. The bioactive constituents in Styrax with strong CYP3A inhibitory activity were identified and their inhibitory mechanisms were carefully investigated.MethodsThe inhibitory effects of Styrax on human CYPs were assayed in vitro, while the pharmacokinetic interactions between Styrax and warfarin were studied in rats. Fingerprinting analysis of Styrax coupled with LC-TOF-MS/MS profiling and CYP inhibition assays were used to identify the constituents with strong CYP3A inhibitory activity. The inhibitory mechanism of oleanonic acid (the most potent CYP3A inhibitor occurring in Styrax) against CYP3A4 was investigated by a panel of inhibition kinetics analyses and in silico analysis.ResultsIn vitro assays demonstrated that Styrax extract strongly inhibited human CYP3A and moderately inhibited six other tested human CYPs, as well as potently inhibited warfarin 10-hydroxylation in liver microsomes from both humans and rats. In vivo assays demonstrated that compared with warfarin given individually in rats, Styrax (100 mg/kg) significantly prolonged the plasma half-life of warfarin by 2.3-fold and increased the AUC(0-inf) of warfarin by 2.7-fold when this herb was co-administrated with warfarin (2 mg/kg) in rats. Two LC fractions were found with strong CYP3A inhibitory activity and the major constituents in these fractions were characterized by LC-TOF-MS/MS. Five pentacyclic triterpenoid acids (including epibetulinic acid, betulinic acid, betulonic acid, oleanonic acid and maslinic acid) present in Styrax were potent CYP3A inhibitors, and oleanonic acid was a competitive inhibitor against CYP3A-mediated testosterone 6β-hydroxylation.ConclusionStyrax and the pentacyclic triterpenoid acids occurring in this herb strongly modulate the pharmacokinetic behavior of warfarin via inhibition of CYP3A.  相似文献   

10.
The potential for metabolism-related drug-drug interactions by new chemical entities is assessed by monitoring the impact of these compounds on cytochrome P450 (CYP) activity using well-characterized CYP substrates. The conventional gold standard approach for in vitro evaluation of CYP inhibitory potential uses pooled human liver microsomes (HLM) in conjunction with prototypical drug substrates, often quantified by LC-MS/MS. However, fluorescent CYP inhibition assays, which use recombinantly expressed CYPs and fluorogenic probe substrates, have been employed in early drug discovery to provide low-cost, high-throughput assessment of new chemical entities. Despite its greatly enhanced throughput, this approach has been met with mixed success in predicting the data obtained with the conventional gold standard approach (HLM+LC-MS). The authors find that the predictivity of fluorogenic assays for the major CYP isoforms 3A4 and 2D6 may depend on the quality of the test compounds. Although the structurally more optimized marketed drugs yielded acceptable correlations between the fluorogenic and HLM+LC-MS/MS assays for CYPs 3A4, 2D6, and 2C9 (r2 = 0.5-0.7; p < 0.005), preoptimization, early discovery compounds yielded poorer correlations (r2 < or = 0.2) for 2 of these major isoforms, CYPs 3A4 and 2D6. Potential reasons for the observed differences are discussed.  相似文献   

11.
The tryptophan photooxidation product 6-formylindolo[3,2-b]carbazole (FICZ) has been proposed as a physiological ligand for the mammalian aryl hydrocarbon receptor (AHR), which it binds with high-affinity, inducing expression of cytochrome P450 1A1 (CYP1A1). We investigated whether the response to FICZ is evolutionarily conserved in vertebrates by measuring FICZ binding to two zebrafish AHRs (AHR1B and AHR2) and its ability to induce zebrafish CYP1 genes (CYP1A, CYP1B1, CYP1C1, CYP1C2, and CYP1D1) in vivo. Exposure of zebrafish embryos (48 h-post-fertilization; hpf) to 10 nM FICZ for 6 h caused strong induction of CYP1A mRNA and a statistically significant but modest induction of CYP1B1 and CYP1C1. Neither CYP1C2 nor CYP1D1 expression was induced by FICZ under the conditions of dose, time or developmental stage examined here. CYP1A induction was significantly greater after 6 h than after 12 h of exposure to FICZ, suggesting a rapid degradation of inducer. The 6-h EC50 values for induction of CYP1A and CYP1B1 by FICZ were 0.6 and 0.5 nM compared to 72-h EC50 values of 2.3 and 2.7 nM for PCB126, indicating that in zebrafish embryos FICZ is a more potent inducer than PCB126. FICZ at 10 nM was able to completely displace binding of 2,3,7,8-tetrachloro-1,6[3H]-dibenzo-p-dioxin to in vitro-expressed zebrafish AHR2 and AHR1B. Inhibition of AHR2 translation in zebrafish embryos by an AHR2-specific morpholino antisense oligonucleotide decreased the induction of CYP1A and CYP1B1 by FICZ and by PCB126. Together, these results demonstrate that FICZ is a potent AHR agonist in zebrafish, inducing expression of multiple CYP1 genes largely through AHR2. Evolutionary conservation of the response to FICZ is consistent with a possible role as an endogenous signaling molecule acting through the AHR.  相似文献   

12.

Context

Molecular diagnosis of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) has not been straightforward.

Objective

To conduct a comprehensive genetic analysis by Multiplex Ligation dependent Probe Amplification (MLPA) and evaluate its reliability for the molecular CAH-21OHD diagnosis.

Patients and methods

We studied 99 patients from 90 families with salt-wasting (SW; n = 32), simple-virilizing (SV; n = 29), and non-classical (NC; n = 29) CAH-21OHD. Molecular analysis was sequentially performed by detecting the most frequent point mutations by allele-specific oligonucleotide polymerase chain reaction (ASO-PCR), large rearrangements by MLPA, and rare mutations by direct sequencing. Parental segregation was evaluated.

Results

ASO-PCR detected microconversions in 164 alleles (91.1%). MLPA identified CYP21A1P large conversions to CYP21A2 in 7 of the remaining 16 (43.7%), 30-kb deletions including the 3′-end of CYP21A1P, C4B, and the 5′-end of CYP21A2 in 3 of the 16 (18.7%), and a complete CYP21A2 deletion in one (6.3%). Five alleles (2.7%) required direct sequencing; three mutations located in the CYP21A2 gene and two derived from CYP21A1P were found. No parental segregation was observed in patients with the c.329_336del and/or the CL6 cluster mutations. These cases were not diagnosed by ASO-PCR, but MLPA detected deletions in the promoter region of the CYP21A2 gene, explaining the genotype/phenotype dissociation.

Conclusion

Using the proposed algorithm, all alleles were elucidated. False-positive results in MLPA occurred when mutations or polymorphisms were located close to the probe-binding regions. These difficulties were overcome by the association of MLPA with ASO-PCR and paternal segregation. Using these approaches, we can successfully use MLPA in a cost-effective laboratory routine for the molecular diagnosis of CAH-21OHD.  相似文献   

13.
Lee WY  Zhou X  Or PM  Kwan YW  Yeung JH 《Phytomedicine》2012,19(2):169-176
This study investigated the effects of Danshen and its active ingredients on the protein expression and enzymatic activity of CYP1A2 in primary rat hepatocytes. The ethanolic extract of Danshen roots (containing mainly tanshinones) inhibited CYP1A2-catalyzed phenacetin O-deethylation (IC50 = 24.6 μg/ml) in primary rat hepatocytes while the water extract containing mainly salvianolic acid B and danshenshu had no effect. Individual tanshinones such as cryptotanshinone, dihydrotanshinone, tanshinone IIA inhibited the CYP1A2-mediated metabolism with IC50 values at 12.9, 17.4 and 31.9 μM, respectively. After 4-day treatment of the rat hepatocytes, the ethanolic extract of Danshen and tanshinone I increased rat CYP1A2 activity by 6.8- and 5.2-fold, respectively, with a concomitant up-regulation of CYP1A2 protein level by 13.5- and 6.5-fold, respectively. CYP1A2 induction correlated with the up-regulation of mRNA level of aryl hydrocarbon receptor (AhR), which suggested a positive feedback mechanism of tanshinone I-mediated CYP1A2 induction. A formulated Danshen pill (containing mainly danshensu and salvianolic acid B and the tanshinones) up-regulated CYP1A2 protein expression and enzyme activity, but danshensu and salvianolic acid B, when used individually, did not affect CYP1A2 activity. This study was the first report on the Janus action of the tanshinones on rat CYP1A2 activity.  相似文献   

14.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

15.
P-glycoprotein (P-gp) is required for adaptive immunity through defined functions in T cell activation and antigen presenting cell (APC) maturation. The potential role of P-gp as an in vivo regulator of alloimmunity is currently unknown. Here we show that P-gp blockade prolongs graft survival in a murine heterotopic cardiac allotransplantation model through in vivo inhibition of the T helper 1 (Th1) cytokine IFN-γ and the Th2 product IL-4, and via downregulation of the APC-expressed positive costimulatory molecule CD80. In vitro, the P-gp antagonist PSC833, a non-calcineurin-inhibitory cyclosporine A analogue, specifically inhibited cellular efflux of the P-gp substrate rhodamine-123 in wild-type CD3+ T cells and MHC class II+ APCs but not their P-gp knockout counterparts that lacked rhodamine-123 efflux capacity. Additionally, P-gp blockade significantly inhibited murine alloimmune T cell activation in a dose-dependent fashion. In vivo, P-gp blockade significantly prolonged graft survival in Balb/c recipients of C57BL/6 cardiac allografts from 8.5 ± 0.5 to 11.7 ± 0.5 days (< 0.01), similar in magnitude to the effects of monotherapy with cyclosporine A. Moreover, P-gp blockade, compared to controls, attenuated intragraft expression of CD3 and CD80, but not CD86, and inhibited IFN-γ and IL-4 production (< 0.05). In the setting of systemic CD86 inhibition, P-gp blockade suppressed IFN-γ and IL-4 production significantly further (to 98% and 89% inhibition, respectively) compared to either P-gp or anti-CD86 blockade alone, and markedly prolonged allograft survival compared to anti-CD86 blockade alone (40.5 ± 4.6 versus 22.5 ± 2.6 days, respectively, < 0.01). Our findings define a novel in vivo regulatory role of P-gp in alloimmunity and identify P-gp as a potential therapeutic target in allotransplantation.  相似文献   

16.
A series of luminescent ruthenium(II) amidodipyridoquinoxaline biotin (dpq-B) complexes [Ru(N-N)2(N-N′)](PF6)2 (N-N = 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (Ph2-phen); N-N′ = 2-((2-biotinamido)ethyl)amidodipyrido[3,2-f:2′,3′-h]quinoxaline (dpq-C2-B), 2-((6-biotinamido)hexyl)amidodipyrido[3,2-f:2′,3′-h]quinoxaline (dpq-C6-B)) has been designed as new luminescent probes for avidin. The electrochemical and photophysical properties of these complexes have been investigated. Upon irradiation, all the complexes exhibited metal-to-ligand charge-transfer (3MLCT) (dπ(Ru) → π(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. In aqueous buffer, the emission was extremely weak, probably a consequence of hydrogen-bonding interactions between the amide moiety of the dpq-B ligands and the water molecules. The avidin-binding properties of all the complexes have been studied by 4′-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, kinetics experiments and confocal microscopy using avidin-conjugated microspheres.  相似文献   

17.
Boropinic acid is a natural isopentenyloxycinnamic acid extracted from the aerial parts of Boronia pinnata Sm. (Rutaceae) with soybean 5-lipoxygenase inhibitory activity. In this paper the topical anti-inflammatory activity of boropinic acid and some of its natural and semi-synthetic derivatives was evaluated using the Croton oil ear test in mice as a model of acute inflammation. Some of the tested compounds (15, 17, 19, 20) revealed an effect comparable (ID50 = 0.18 ÷ 0.72 μmol/cm2) to that of the reference drug indomethacin (ID50 = 0.23 μmol/cm2), a non-steroidal anti-inflammatory drug.  相似文献   

18.
Parkinson’s disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (−)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1 μM (64.0 ± 3.1%) than both (−)-epicatechin (46.0 ± 4.1%, p < 0.05) and (+)-catechin (13.1 ± 3.0%, p < 0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.  相似文献   

19.
The mechanism of flavonol-induced cardioprotection is unclear. We compared the protective actions of a flavonol that inhibits calcium utilization and has antioxidant activity, 3′,4′-dihydroxyflavonol (DiOHF); a flavonol that affects only calcium activity, 4′-OH-3′-OCH3-flavonol (4′-OH-3′-OCH3F); and a water-soluble flavonol with selective antioxidant activity, DiOHF-6-succinamic acid (DiOHF-6-SA), in isolated, perfused rat hearts. Hearts were subjected to global ischemia for 20 min followed by 30 min reperfusion and were treated with vehicle (0.05% DMSO), DiOHF, 4′-OH-3′-OCH3F, or DiOHF-6-SA (all 10 μM, n = 5-8 per group). Flavonols were infused for 10 min before ischemia and during reperfusion. In vehicle-treated hearts, left-ventricular (LV) + dP/dt was reduced by 60% at the end of reperfusion compared to the preischemic level. Lactate dehydrogenase (LDH) release was elevated and endothelial NO synthase (eNOS) expression was lower in vehicle-treated hearts compared to shams. In comparison, DiOHF treatment improved LV function upon reperfusion, decreased LDH, and preserved eNOS expression. The antioxidant DiOHF-6-SA also preserved contractility, reduced LDH, and preserved eNOS expression. In contrast, hearts treated with 4′-OH-3′-OCH3F showed a degree of contractile impairment similar to that of the vehicle group. DiOHF and DiOHF-6-SA also exerted cardioprotection when given only during reperfusion and not when administered only before ischemia. Flavonol-induced cardioprotection relies on antioxidant activity and is mainly exerted during reperfusion.  相似文献   

20.
Polymorphisms in genes encoding CYPs (Phase I) and ABCB1 (Phase III) enzymes may attribute to variability of efficacy of taxanes. The present study aims to find the influence of CYP and ABCB1 gene polymorphisms on taxanes based clinical outcomes. 132 breast cancer patients treated with taxanes based chemotherapy were genotyped for CYP3A4*1B, CYP3A5*3, CYP1B1*3, CYP2C8*3, ABCB1 1236C>T, 2677G>T/A and 3435C>T polymorphisms using PCR-RFLP. Associations of genetic variants with clinical outcomes in terms of response in 58 patients receiving neo-adjuvant chemotherapy (NACT), and chemo-toxicity in 132 patients were studied. Multifactor dimensionality reduction (MDR) analysis was performed to evaluate higher order gene–gene interactions with clinical outcomes. Pathological response to taxane based NACT was associated with GA genotype as well as A allele of CYP3A5*3 polymorphism (Pcorr = 0.0465, Pcorr = 0.0465). Similarly, association was found in dominant model of CYP3A5*3 polymorphism with responders (Pcorr = 0.0465). Haplotype analysis further revealed ACYP3A4–ACYP3A5 haplotype to be significantly associated with responders (Pcorr = 0.048). In assessing toxicity, significant association of variant (TT) genotype and T allele of ABCB1 2677G>T/A polymorphism, was found with ‘grade 1 or no leucopenia’ (Pcorr = 0.0465, Pcorr = 0.048). On evaluating higher order gene–gene interaction models by MDR analysis, CYP3A5*3; ABCB11236C>T and ABCB1 2677G>T/A; ABCB1 3435C>T and CYP1B1*3 showed significant association with treatment response, grade 2–4 anemia and dose delay/reduction due to neutropenia (P = 0.024, P = 0.004, P = 0.026), respectively. Multi-analytical approaches may provide a better assessment of pharmacogenetic based treatment outcomes in breast cancer patients treated with taxanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号