首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic expression patterns of four retinoid-metabolizing enzymes create rapidly changing retinoic acid (RA) patterns in the emerging eye anlage of the mouse. First, a RA-rich ventral zone is set up, then a RA-poor dorsal zone, and finally a tripartite organization consisting of dorsal and ventral RA-rich zones separated by a horizontal RA-poor stripe. This subdivision of the retina into three RA concentration zones is directly visible as beta-galactosidase labeling patterns in retinas of RA-reporter mice. Because the axons of retinal ganglion cells transport the reporter product anterogradely, the central projections from dorsal and ventral retina can be visualized as two heavily labeled axon bundles. Comparisons of the axonal labeling with physiologic recordings of visual topography in the adult mouse show that the labeled axons represent the upper and the lower visual fields. The RA-poor stripe develops into a broad horizontal zone of higher visual acuity. Comparisons of the retina labeling with eye-muscle insertions show that the axis of the RA pattern lines up with the dorsoventral axis of the oculomotor system. These observations indicate that the dorsoventral axis of the embryonic eye anlage determines the functional coordinates of both vision and eye movements in the adult.  相似文献   

2.
Vitamin A is known to be critical for the beginning of eye development as well as for photoreception in the functional retina. Hardly anything, however, is known about whether retinoic acid (RA)-regulated gene expression also plays a role in the long intervening period, during which the neurobiological retinal structure takes shape. The eye contains a highly intricate architecture of RA-synthesizing (RALDH) and degrading (CYP26) enzymes. Whereas the RALDHs are integrated in the early molecular mechanisms through which the dorso-ventral retina organization is established, the CYP26 enzymes are not necessary for this process and no molecular targets that match their retinal expression pattern have yet been identified. In this article we describe that CYP26 expression in the mouse is most distinctive during later stages of retina formation. Throughout development CYP26A1 degrades RA in a horizontal region that extends across the retina, but during later embryonic and postnatal retina maturation this function is reinforced by another enzyme, CYP26C1. RA applications at this stage do not affect the RALDHs but cause differential changes in CYP26 expression: Cyp26a1 is up-regulated, but more rapidly by 9-cis than all-trans RA, Cyp26c1 is down-regulated, and Cyp26b1, which is undetectable in the normal mouse retina, is strongly activated in retinal ganglion cells. The dynamic regulation in RA-difference patterns by the CYP26 enzymes may set up spatial constellations for expression of genes involved in formation of retinal specializations for higher acuity vision, which are known to form over a prolonged period late in retina development.  相似文献   

3.
4.
Retinoic acid (RA) is essential for normal vertebrate development, including the patterning of the central nervous system. During early embryogenesis, RA is produced in the trunk mesoderm through the metabolism of vitamin A derived from the maternal diet and behaves as a morphogen in the developing hindbrain where it specifies nested domains of Hox gene expression. The loss of endogenous sources of RA can be rescued by treatment with a uniform concentration of exogenous RA, indicating that domains of RA responsiveness can be shaped by mechanisms other than the simple diffusion of RA from a localized posterior source. Here, we show that the cytochrome p450 enzymes of the Cyp26 class, which metabolize RA into polar derivatives, function redundantly to shape RA-dependent gene-expression domains during hindbrain development. In zebrafish embryos depleted of the orthologs of the three mammalian CYP26 genes CYP26A1, CYP26B1 and CYP26C1, the entire hindbrain expresses RA-responsive genes that are normally restricted to nested domains in the posterior hindbrain. Furthermore, we show that Cyp26 enzymes are essential for exogenous RA to rescue hindbrain patterning in RA-depleted embryos. We present a ;gradient-free' model for hindbrain patterning in which differential RA responsiveness along the hindbrain anterior-posterior axis is shaped primarily by the dynamic expression of RA-degrading enzymes.  相似文献   

5.
6.
Exogenous retinoic acid (RA) induces marked effects on limb patterning, but the precise role of endogenous RA in this process has remained unknown. We have studied the role of RA in mouse limb development by focusing on CYP26B1, a cytochrome P450 enzyme that inactivates RA. Cyp26b1 was shown to be expressed in the distal region of the developing limb bud, and mice that lack CYP26B1 exhibited severe limb malformation (meromelia). The lack of CYP26B1 resulted in spreading of the RA signal toward the distal end of the developing limb and induced proximodistal patterning defects characterized by expansion of proximal identity and restriction of distal identity. CYP26B1 deficiency also induced pronounced apoptosis in the developing limb and delayed chondrocyte maturation. Wild-type embryos exposed to excess RA phenocopied the limb defects of Cyp26b1(-/-) mice. These observations suggest that RA acts as a morphogen to determine proximodistal identity, and that CYP26B1 prevents apoptosis and promotes chondrocyte maturation, in the developing limb.  相似文献   

7.
8.
We have previously reported that the retinoic acid (RA) catabolizing enzyme CYP26A1 plays an important role in protecting tail bud tissues from inappropriate exposure to RA generated in the adjacent trunk tissues by RALDH2, and that Cyp26a1-null animals exhibit spina bifida and caudal agenesis. We now show that, in the absence of Cyp26a1, retinoic acid receptor gamma (RARgamma) mediates ectopic RA-signaling in the tail bud. We also show that activated RARgamma results in downregulation of Wnt3a and Fgf8, which integrate highly conserved signaling pathways known for their role in specifying caudal morphogenesis. Ablation of the gene for RARgamma (Rarg) rescues Cyp26a1-null mutant animals from caudal regression and embryonic lethality, thus demonstrating that CYP26A1 suppresses the RA-mediated downregulation of WNT3A and FGF8 signaling pathways by eliminating ectopic RA in gastrulating tail bud mesoderm.  相似文献   

9.
Vitamin A (retinol) and its active metabolite, retinoic acid (RA), serve dual roles in the female reproductive tract. Cytochrome P450 26A1 (Cyp26a1), an RA-metabolizing enzyme, is involved in mammalian early pregnancy. In order to investigate the role of RA synthesis and metabolism during embryo implantation, we first investigated the spatiotemporal expression of RA-signal in the mouse uterus during the peri-implantation period. RA-signal-related molecules, including binding proteins, synthesizing enzymes, catabolizing enzymes and receptors, were all expressed in the mouse uterus during embryo implantation. The locations of the RA synthetic system (Aldh1a1, Aldh1a2, CRBP1) and catabolizing enzyme (Cyp26a1) were distinctive in the mouse uterus during the peri-implantation period. Aldh1a1 was located in the gland epithelium, whereas Aldh1a2 and CRBP1 were located in the stroma and Cyp26a1 was expressed in the luminal and glandular epithelium. These results demonstrate that RA synthesis occurs in the stroma, whereas RA metabolism takes place in the endometrial epithelium. When endometrial epithelial cells were isolated on day 4.5 of pregnancy and treated with E2 (17beta-estradiol) or a combination of E2 and progesterone, all-trans-RA (10???M) significantly down-regulated the expression of LIF, HB-EF and CSF-1 in these cells in vitro. Taken together, these results suggest that the accumulation of RA in the stroma during mouse embryo implantation has an inhibitory effect on the expression of the three implantation-essential genes, LIF, HB-EGF and CSF-1. Therefore, the expression of Cyp26a1 in luminal and glandular epithelium might block the adverse effect of RA in order to promote successful embryo implantation.  相似文献   

10.
The appropriate regulation of retinoic acid signaling is indispensable for patterning of the vertebrate central nervous system along the anteroposterior (A-P) axis. Although both CYP26A1 and CYP26C1, retinoic acid-degrading enzymes that are expressed at the anterior end of the gastrulating mouse embryo, have been thought to play an important role in central nervous system patterning, the detailed mechanism of their contribution has remained largely unknown. We have now analyzed CYP26A1 and CYP26C1 function by generating knockout mice. Loss of CYP26C1 did not appear to affect embryonic development, suggesting that CYP26A1 and CYP26C1 are functionally redundant. In contrast, mice lacking both CYP26A1 and CYP26C1 were found to manifest a pronounced anterior truncation of the brain associated with A-P patterning defects that reflect expansion of posterior identity at the expense of anterior identity. Furthermore, Cyp26a1-/-Cyp26c1-/- mice fail to produce migratory cranial neural crest cells in the forebrain and midbrain. These observations, together with a reevaluation of Cyp26a1 mutant mice, suggest that the activity of CYP26A1 and CYP26C1 is required for correct A-P patterning and production of migratory cranial neural crest cells in the developing mammalian brain.  相似文献   

11.
We consider here how morphogenetic signals involving retinoic acid (RA) are switched on and off in the light of positive and negative feedback controls which operate in other embryonic signalling systems. Switching on the RA signal involves the synthetic retinaldehyde dehydrogenase (RALDH) enzymes and it is currently thought that switching off the RA signal involves the CYP26 enzymes which catabolise RA. We have tested whether these enzymes are regulated by the presence or absence of all-trans-RA using the vitamin A-deficient quail model system and the application of excess retinoids on beads to various locations within the embryo. The Raldhs are unaffected either by the absence or presence of excess RA, whereas the Cyps are strongly affected. In the absence of RA some, but not all domains of Cyp26A1, Cyp26B1 and Cyp26C1 are down-regulated, in particular the spinal cord (Cyp26A1), the heart and developing vasculature (Cyp26B1) and the rhombomeres (Cyp26C1). In the presence of excess RA, the Cyps show a differential regulation-Cyp26A1 and Cyp26B1 are up-regulated whereas Cyp26C1 is down-regulated. We tested whether the Cyp products have a similar influence on these genes and indeed 4-oxo-RA, 4-OH-RA and 5,6-epoxy-RA do. Furthermore, these 3 metabolites are biologically active in that they fully rescue the vitamin A-deficient quail embryo. Finally, by using retinoic acid receptor selective agonists we show that these compounds regulate the Cyps through the RARalpha receptor. These results are discussed with regard to positive and negative feedback controls in developing systems.  相似文献   

12.
We have cloned a fragment of Cyp26B1, a novel retinoic acid (RA) catabolising enzyme, and examined its expression pattern during early stages of chick embryogenesis. It is expressed from stage 7 in the tail bud, an anterior patch of mesenchyme, the heart, the endothelium of the vasculature, the eye, the limb bud, the hindgut and in a complex pattern in the rhombomeres of the hindbrain. As such it has a non-overlapping expression with chick Cyp26A1, the other RA catabolising enzyme, but shows a combination of features of mouse Cyp26A1 and Cyp26B1. We have also examined its expression in the quail embryo and in the RA-free quail embryo. In the absence of RA, Cyp26B1 is only expressed in the hindbrain and fails to be expressed in all the other regions of the embryo, most dramatically in the trunk. Adding back RA rescues Cyp26B1 expression.  相似文献   

13.
Determination of the dorso-ventral dimension of the vertebrate retina is known to involve retinoic acid (RA), in that high RA activates expression of a ventral retinaldehyde dehydrogenase and low RA of a dorsal dehydrogenase. Here we show that in the early eye vesicle of the mouse embryo, expression of the dorsal dehydrogenase is preceded by, and transiently overlaps with, the RA-degrading oxidase CYP26. Subsequently in the embryonic retina, CYP26 forms a narrow horizontal boundary between the dorsal and ventral dehydrogenases, creating a trough between very high ventral and moderately high dorsal RA levels. Most of the RA receptors are expressed uniformly throughout the retina except for the RA-sensitive RARbeta, which is down-regulated in the CYP26 stripe. The orphan receptor COUP-TFII, which modulates RA responses, colocalizes with the dorsal dehydrogenase. The organization of the embryonic vertebrate retina into dorsal and ventral territories divided by a horizontal boundary has parallels to the division of the Drosophila eye disc into dorsal, equatorial and ventral zones, indicating that the similarities in eye morphogenesis extend beyond single molecules to topographical patterns.  相似文献   

14.
Takeuchi H  Yokota A  Ohoka Y  Iwata M 《PloS one》2011,6(1):e16089

Background

The vitamin A metabolite, retinoic acid (RA), plays important roles in the regulation of lymphocyte properties. Dendritic cells in gut-related lymphoid organs can produce RA, thereby imprinting gut-homing specificity on T cells and enhancing transforming growth factor (TGF)-β-dependent induction of Foxp3+ regulatory T cells upon antigen presentation. In general, RA concentrations in cells and tissues are regulated by its degradation as well. However, it remained unclear if T cells could actively catabolize RA.

Methodology/Principal Findings

We assessed the expression of known RA-catabolizing enzymes in T cells from mouse lymphoid tissues. Antigen-experienced CD44+ T cells in gut-related lymphoid organs selectively expressed Cyp26b1, a member of the cytochrome P450 family 26. However, T cells in the spleen or skin-draining lymph nodes did not significantly express Cyp26b1. Accordingly, physiological levels of RA (1–10 nM) could induce Cyp26b1 expression in naïve T cells upon activation in vitro, but could not do so in the presence of TGF-β. Overexpression of Cyp26b1 significantly suppressed the RA effect to induce expression of the gut-homing receptor CCR9 on T cells. On the other hand, knocking down Cyp26b1 gene expression with small interfering RNA or inhibiting CYP26 enzymatic activity led to enhancement of the RA-induced CCR9 expression.

Conclusions/Significance

Our data demonstrate a role for CYP26B1 in regulating RA-dependent signals in activated T cells but not during TGF-β-dependent differentiation to Foxp3+ regulatory T cells. Aberrant expression of CYP26B1 may disturb T cell trafficking and differentiation in the gut and its related lymphoid organs.  相似文献   

15.
Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.  相似文献   

16.
Skeletal syndromes are among the most common birth defects. Vertebrate skeletogenesis involves two major cell types: cartilage-forming chondrocytes and bone-forming osteoblasts. In vitro, both are under the control of retinoic acid (RA), but its exact in vivo effects remained elusive. Here, based on the positional cloning of the dolphin mutation, we have studied the role of the RA-oxidizing enzyme Cyp26b1 during cartilage and bone development in zebrafish. cyp26b1 is expressed in condensing chondrocytes as well as in osteoblasts and their precursors. cyp26b1 mutants and RA-treated wild-type fish display a reduction in midline cartilage and the hyperossification of facial and axial bones, leading to fusions of vertebral primordia, a defect not previously described in the context of RA signaling. Fusions of cervical vertebrae were also obtained by treating mouse fetuses with the specific Cyp26 inhibitor R115866. Together with data on the expression of osteoblast markers, our results indicate that temporal and spatial restriction of RA signaling by Cyp26 enzymes is required to attenuate osteoblast maturation and/or activity in vivo. cyp26b1 mutants may serve as a model to study the etiology of human vertebral disorders such as Klippel-Feil anomaly.  相似文献   

17.
Several independent lines of evidence have revealed an instructive role for retinoic acid (RA) signalling in the establishment of normal pattern and cellular specification of the vertebrate embryo. Molecular analyses have previously identified the major RA-synthesising (RALDH1-3) and RA-degrading (CYP26A-C1) enzymes as well as other components involved in RA processing (e.g. CRABP). Although the majority of the early effects of RA can be attributed to the activity of RALDH2, many other effects are suggestive of the presence of an as yet unidentified RA source. Here we describe the identification, expression, biochemistry and functional analysis of CYP1B1, a member of the cytochrome p450 family of mono-oxygenases, and provide evidence that it contributes to RA synthesis during embryonic patterning. We present in vitro biochemical data demonstrating that this enzyme can generate both all-trans-retinal (t-RAL) and all-trans-retinoic acid (t-RA) from the precursor all-trans-retinol (t-ROH), but unlike the CYP26s, CYP1B1 cannot degrade t-RA. In particular, we focussed on the capacity of CYP1B1 to regulate the molecular mechanisms associated with dorsoventral patterning of the neural tube and acquisition of motor neuron progenitor domain identity. Concordant with its sites of expression and biochemistry, data are presented demonstrating that CYP1B1 is capable of eliciting responses that are consistent with the production of RA. Taken together, we propose that these data provide strong support for CYP1B1 being one of the RALDH-independent components by which embryos direct RA-mediated patterning.  相似文献   

18.
Retinoic acid (RA) plays a pivotal role in patterning and differentiation of the embryonic inner ear. Despite its documented effects during embryonic development, the cellular sites that synthesize or metabolize RA in the inner ear have yet to be determined. Here we describe the distribution of three synthesizing enzymes, retinaldehyde dehydrogenases 1, 2 and 3 (RALDH1, RALDH2 and RALDH3) and two catabolizing enzymes (CYP26A1 and CYP26B1) in the mouse inner ear at embryonic day 18.5 when active cell differentiation is underway. Two detection methods, radioactive and non-radioactive in situ hybridization, were employed to elucidate the tissue distribution and cellular localization of these enzymes, respectively. All of the five enzymes examined, with the exception of CYP26A1, were expressed in both vestibular and cochlear end organs. While expression of the three RALDHs was observed in various cell types, CYP26B1 expression was found only in supporting cells of the vestibular and cochlear end organs. In the cochlea, expression domains of RALDH1-3 and CYP26B1 were complementary to one another. These results reveal specific tissue- and cellular expression patterns of RA synthesizing and catabolizing enzymes in the pre-natal inner ear, and suggest that a precise control of RA concentrations in various cell types of the inner ear is achieved by the balance between RALDHs and CYP26B1 activities.  相似文献   

19.
We have investigated the role of retinoic acid (RA) in eye development using the vitamin A deficient quail model system, which overcomes problems of retinoic acid synthesising enzyme redundancy in the embryo. In the absence of retinoic acid, the ventral optic stalk and ventral retina are missing, whereas the dorsal optic stalk and dorsal retina develop appropriately. Other ocular abnormalities observed were a thinner retina and the lack of differentiation of the lens. In an attempt to explain this, we studied the expression of various dorsally and ventrally expressed genes such as Pax2, Pax6, Tbx6, Vax2, Raldh1 and Raldh3 and noted that they were unchanged in their expression patterns. In contrast, the RA catabolising enzymes Cyp26A1 and Cyp26B1 which are known to be RA-responsive were not expressed at all in the developing eye. At much earlier stages, the expression domain of Shh in the prechordal plate was reduced, as was Nkx2.1 and we suggest a model whereby the eye field is specified according to the concentration of SHH protein that is present. We also describe another organ, Rathke's pouch which fails to develop in the absence of retinoic acid. We attribute this to the down-regulation of Bmp2, Shh and Fgf8 which are known to be involved in the induction of this structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号