首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To characterize the relationship between the leaf surface ofGerbera jamesoniiHooker cultivars and the searching behavior of the parasitoidEncarsia formosaGahan on a leaf, the trichome density and shape were described, and the walking behavior was quantified. Leaf hair density varied from 80 to more than 1000 trichomes/cm2and the hair shape varied from single erect trichomes to tapestries of entangled trichomes above the leaf surface. The walking activity, speed, and pattern of the parasitoid were tested on leaves with different hair density and shape. In spite of the large differences in leaf surface structure, the walking activity was similar and around 75% on most cultivars. The walking speed was between 0.2 and 0.3 mm/s on all cultivars and was not significantly different from the speed on tomato. On hairless sweet pepper leaves the walking speed is much higher (0.73 mm/s), so the hairs onGerberaleaves do hamper parasitoid females and result in a strong reduction of the walking speed, but the variation in hair density and shape onGerberadoes not lead to differences in walking activity, pattern, and speed. It appears that the hairs ofGerberaare less of an obstacle forE. formosathan the stiff, large hairs occurring in a high density on cucumber, where the walking speed of the parasitoid is less than 0.2 mm/s. A rise of temperature of 5°C gave a significantly higher walking speed (0.39 mm/s) ofE. formosafemales on all cultivars tested. The relative straightness of the walking track was high and the same on all cultivars. Consequences of the results of the searching behavior ofE. formosaonG. jamesoniicultivars are discussed with respect to other host plants. As parasitoid walking speeds are the same onGerberaand tomato, and whitefly reproduction is also similar on these two host plants, we conclude that biological control of whiteflies onGerberais a realistic option. This conclusion is confirmed by the strong increase of commercial biological control onGerberawhich occurred during the past 5 years.  相似文献   

2.
One of the factors that may complicate biological control of the greenhouse whitefly on Gerbera jamesonii by Encarsia formosa is the rosette shape of this ornamental, which differs from the vertical shape of most vegetable plants (cucumber, egg plant, tomato, etc.). Therefore, host-habitat location and the behaviour prior to landing on uninfested and infested leaves was studied. Attraction of E. formosa from a short distance by infested leaves could not be detected: the parasitoid females landed at random on uninfested and infested leaves. After the first landing, a redistribution of the wasps occurred on the leaves. After 24 h three times as many wasps were found on the infested leaves than on uninfested ones. In a dispersal experiment with four plants, E. formosa appeared to have no preference for landing on leaves of the medium age class, which is the age class on which most of the whiteflies in a suitable stage for parasitism occur. Twenty percent of the parasitoids were found on the plants 20 min after releasing them. These results were independent of the plant cultivar and the host density on the plants. In the course of 8 h, the number of E. formosa females recovered from plants increased linearly, and this increase was greater on plants where hosts were present and also greater on the plant cultivar with the lowest trichome density. After 24 h, the percentage of females was highest (56%) on plants with the highest host density. E. formosa females were arrested on leaves where hosts were present. Contrary to our expectation, the results from the two G. jamesonii cultivars that differed strongly in leaf hairiness were not significantly different in most experiments. Only at the high host density was parasitism found to be lower on the cultivar with the higher hair density. Parasitoids may walk on top of the `hair coverlet' of cultivars with high trichome density and, therefore, be hampered less than expected.  相似文献   

3.
IndividualEncarsia formosa parasitoids were observed continuously until the parasitoids flew away, either on clean tomato leaflets, on leaflets with honeydew, or on leaflets with unparasitized and parasitized whitefly larvae. Encounters with unparasitized and parasitized whitefly larvae, and contact with honeydew arrested the parasitoids on the leaflet. The walking speed increased linearly from 0.179 to 0.529 mm/s between 15 and 25–30°C. The walking activity showed another relationship with temperature: it was below 10% at 15 and 18°C, and increased to about 75% at 20, 25 and 30°C. It was not affected by host encounters or by 1 to 4 ovipositions. The total handling time of hosts was between 1.8–21.8% of the total time on the leaflet. Self-superparasitism was not observed. Conspecific-superparasitism did occur in 14% of the encounters with hosts containing a parasitoid egg, but was not observed anymore when the parasitoid egg had hatched. Experienced parasitoids superparasitized as often as naive females. The foraging behaviour ofE. formosa from landing on a leaf until departure has now been quantified and is discussed.  相似文献   

4.
The foraging behavior of Amitus fuscipennis MacGown & Nebeker and Encarsia formosa Gahan was studied on tomato leaflets with 20 Trialeurodes vaporariorum (Westwood) larvae in the first or third stage. Ten of the whitefly larvae were previously parasitized and contained a conspecific or a heterospecific parasitoid egg or larva. The host type (host stage and/or previous parasitization) did not influence the foraging behavior of either parasitoid species. The residence time on these tomato leaflets was about 0.9 h for A. fuscipennis and 1.9 h for E. formosa. Amitus fuscipennis hardly stood still and fed little, while E. formosa showed extensive standing still and feeding. As a result, the time walking while drumming was similar for both parasitoid species. The numbers of host encounters and ovipositions per leaflet were similar for both parasitoid species. However, the residence time of A. fuscipennis was half as long as that of E. formosa so the rate of encounters and ovipositions was higher for A. fuscipennis. Amitus fuscipennis is more efficient in finding and parasitizing hosts under these conditions. The walking activity and host acceptance of the synovigenic E. formosa diminished with the number of ovipositions, but not those of the proovigenic A. fuscipennis. Encarsia formosa is egg limited, while A. fuscipennis is time limited because of its short life span and high egg load. Both parasitoid species discriminated well between unparasitized larvae and self-parasitized larvae, but discriminated poorly those larvae parasitized by a conspecific and did not discriminate larvae parasitized by a heterospecific. Self-superparasitism, conspecific superparasitism, and multiparasitism were observed for both parasitoid species. Superparasitism always resulted in the emergence of one parasitoid and multiparasitism resulted in a higher emergence of one parasitoid of the species that had parasitized first. The data suggest that A. fuscipennis is a good candidate for use in biological control of high-density spots of T. vaporariorum when we consider its high encounter and oviposition rate.  相似文献   

5.
Previous investigations suggested that the leafminer parasitoid Dacnusa sibirica Telenga does not use a volatile hostrelated infochemical in foraging for hosts. Parasitoids landed with equal frequencies on an uninfested tomato plant and on a tomato plant infested with larvae of the leafminer Liriomyza bryoniae (Kalt.) (Hendrikse et al., 1980). In contrast, we found that volatile infochemicals emitted by uninfested and leafminer-infested tomato plants differently affected the parasitoid 's foraging behavior in a windtunnel. This was obvious from the proportion of wasps flying upwind but not from the proportion of wasps landing on the leaves. Latency time on an uninfested tomato leaflet and proportion of latency time devoted to preflight antennal behavior were influenced by the presence of upwind infested or uninfested tomato leaves. However, these parameters were not affected by odors in the absence of visual plant stimuli. Our data provide a new view on foraging behavior of Dacnusa sibirica.  相似文献   

6.
We investigated the impact of inundative releases of the parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae), for control of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), on cut gerbera (Gerbera jamesonii L.) under controlled greenhouse conditions. Experimental units consisted of ten plants covered and separated from other units by gauze tents. We assessed three release rates of the aphelinid parasitoid: a 7-week experiment with a standard release rate (10 m−2/14 days), and a subsequent 3-month trial with high (100 m−2/week) and very high (1,000 m−2/week) release rates. Experimental units without release of parasitoids served as control treatment. Gerbera plants were infested initially with 50–100 juvenile and 50–70 adult whiteflies in the first experiment, and in the second experiment with less than 50 juveniles per plant and 50–70 adults. Whitefly and parasitoid population density were assessed in weekly intervals using infestation and activity categories. Results show that parasitized whiteflies were present in all treatments within 2 weeks after initial release. Unfortunately, it was not possible to control whiteflies with standard release rates of E. formosa. Although parasitism rates slightly increased, the effect on whitefly populations was negligible. Large amounts of honeydew and growth of sooty mold fungi caused the termination of the first experiment. In a second experiment, E. formosa was tested at 10–100 times higher release densities. In contrast to the first experiment, whitefly densities increased steadily during the first 8 weeks, but remained constant until the end of the experiment in both treatments. Parasitism by E. formosa reached its maximum after 8 weeks. We discuss possible reasons for the low efficiency of E. formosa as a whitefly antagonist in greenhouse production of gerbera.  相似文献   

7.
Laboratory experiments were conducted to examine the effect of ryegrass infection by the endophytic fungusAcremonium loliiLatch, Christensen and Samuels onMicroctonus hyperodaeLoan, a parasitoid ofListronotus bonariensis(Kuschel). Progression of parasitoids through the larval instar stages was shown to depend on adequate nutrition of the weevil host. Compared to confinement on endophyte-free ryegrass, parasitized weevils held on nonpreferred diets comprising leaf segments from endophyte-infected ryegrass and switchgrass contained parasitoid larvae with retarded development. Similarly, development of parasitoid larvae was retarded in hosts feeding on artificial diet containing diterpenes and alkaloids ofA. loliiorigin. Several diterpenes incorporated into the diet reduced survival of the parasitoid larvae. Attack rate of parasitoids was reduced when the quality of potential host weevils was compromised by confinement on nonpreferredA. lolii-infected ryegrass or without food for 14 days.  相似文献   

8.
Larvicidal activity of lectins onLucilia cuprina: mechanism of action   总被引:1,自引:0,他引:1  
Foraging behaviour and host-instar preference of young and old females of the solitary aphid parasitoid,Lysiphlebus cardui Marshall (Hymenoptera: Aphidiidae), were studied in the laboratory. The analysis of interactions between parasitoids and different stages ofAphis fabae cirsiiacanthoidis Scop. (Homoptera: Aphididae) revealed that encounter rates between aphids and parasitoid females and defence reactions of the aphids influenced the degree to which a particular aphid age class is parasitized. Encounter rates between hosts and parasitoid females depended on the foraging pattern of the parasitoid, which varied with age. In mixed aphid colonies patch residence time increased with parasitoid age. Furthermore, younger parasitoids (≦1 day old) laid more eggs into second and third instars, while older parasitoids (≧4 days old) did not show distinct host instar preferences. It is suggested that the oviposition behaviour ofL. cardui is influenced by the physiological state, i.e. the age of the wasp.  相似文献   

9.
Among 6 laboratory hosts tested, the egg-larval parasitoidChelonus blackburni Cameron completed its development in only 3;Corcyra cephalonica Stainton,Phthorimaea operculella (Zeller) andAchroia grisella (Fabricius). The parasitoid failed to develop inSpodoptera litura (Fabricius),Galleria mellonella L. andSitotroga cerealella (Olivier). The development period of the parasitoids obtained from permissive hosts correspond to the development period of their hosts. Development period ofP. operculella, A grisella andC. cephalonica were 24.7±2.0, 39.5±2.1 and 50.5±4.1 days respectively while the development period of the parasitoid reared from these hosts were 25.8±1.6, 36.4±3.5 and 42.5±3.5 days respectively. The fecundity of the parasitoids reared onA. grisella, P. operculella andC. cephalonica were 365.2±52.8, 287.9±101.9 and 248.7±50.8 respectively. The size of the parasitoids reared from the above 3 hosts also followed the similar trend. However, no significant difference was observed on the percent parasitism and the longevity of the parasitoids reared on different hosts. This study was conducted at a temperature of 24±2°C and 60±5% RH. Contribution No 46001 of Biological Control Centre (NCIPM), Bangalore.  相似文献   

10.
House fly, Musca domestica L., pupae were exposed to six species of pteromalid parasitoids, Muscidifurax zaraptor Kogan and Legner, M. raptor Girault and Sanders, M. raptorellus Kogan and Legner, Pachycrepoideus vindemiae (Rondani), Spalangia nigroaenea Curtis, and Urolepis rufipes Ashmead. Exposures were made for 48 h at six parasitoid-to-host ratios to measure the effect of parasitoid density on parasitoid-induced mortality (PIM) of hosts (excluding mortality as measured by parasitoid emergence). PIM was evident at all parasitoid-to-host ratios for all six species. Fly eclosion declined with a corresponding increase in the parasitoid-to-host ratio; the reverse was generally true for PIM. Parasitoid emergence increased initially with a corresponding increase in the parasitoid-to-host ratio to a point (depending on the parasitoid species), but then declined. The three Muscidifurax spp. and P. vindemiae exhibited similar behavior and generally avoided previously stung hosts until ovipositional restraints broke down at the higher parasitoid-to-host ratios. S. nigroaenea and U. rufipes exhibited little ovipositional restraint, resulting in a high proportion of PIM of hosts. Understanding factors that influence PIM will provide better evaluations of field releases of parasitoids to control flies and will aid in the development of the most economic procedures for large scale rearing of pteromalid parasitoids.  相似文献   

11.
Searching behaviour of two aphelinid parasitoids, Encarsia formosa Gahan and Eretmocerus eremicus Rose and Zolnerowich, was compared in a controlled environment under simulated summer [high light intensity (83 ± 1 W/m2), and 24 ± 1°C] and winter [low light intensity (11 ± 0.5 W/m2), and 20 ± 1°C] greenhouse conditions on tomato leaflets, with and without a single 3rd instar whitefly host, Trialeurodes vaporariorum (Westwood), within a 4-cm tomato leaflet arena. Residence time of both parasitoid species was longer on infested leaflets vs. clean leaflets, and longer under winter than summer conditions. When parasitoids encountered a host on infested leaflets, residence time increased. In all cases, residence time of E. formosa was longer that of E. eremicus. Proportion of time spent searching (i.e. antennating leaf surface while walking or standing still) was longer on clean vs. infested leaflets for both E. formosa and E. eremicus. Walking speed by E. eremicus on clean leaflets was faster than E. formosa under both summer and winter conditions. Host handling time and proportion of host acceptance did not vary among parasitoids. These findings suggest that E. eremicus could be more efficient in host finding on tomato leaflets than E. formosa over all seasons, especially in the winter when natural light is limiting and where daylight temperatures are ≥20°C.  相似文献   

12.
The interaction between the entomopathogenic fungusAschersonia aleyrodis and the parasitoidEncarsia formosa on greenhouse whitefly as a host organism was studied, in particular, the survival of the parasitoid after treatment of parasitized hosts with fungal spores. The mean number of parasitized black pupae per parasitoid produced at 25°C was significantly reduced after spore treatment in the first three days following parasitization. Spore treatment four, seven or ten days after parasitization resulted in a mean number of parasitized pupae not significantly different from the number of black pupae in the control. The rather sudden change from low to high survival of parasitized hosts when treated with spores four days after parasitization in spite of high numbers of infected unparasitized larvae, coincided with the hatching of the parasitoid larva from the egg inside the host. Possible reasons for this decrease in susceptibility to infection after parasitoid egg hatch, such as induced changes in host cuticle or haemolymph, are discussed. Parasitoids emerged from treated hosts did not show differences in reproduction compared with parasitoids emerging from untreated hosts. Both natural enemeies of whitefly are compatible to a great extent.  相似文献   

13.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

14.
R. Singh  M. Srivastava 《BioControl》1989,34(4):581-586
The influence of kairomones on the numerical response of the parasitoidTrioxys indicus against its hostAphis craccivora at its varying density was studied. The kairomones (applied as aqueous extract of the host) significantly enhanced the rate of parasitisation and multiplication and the area of discovery of the parasitoid and also the K-values of mortality of the host at all parasitoid densities introduced (1, 2, 4, 8, 12 and 16 parasitoids) into troughs having about 200 hosts. The sex-ratio of F1 offspring decreased at lower parasitoid densities and remained more or less unchanged at higher parasitoid densities after the application of kairomones. The present findings indicate that if kairomones are applied properly, the number of hosts destroyed by a stimulated parasitoid will be about 200, twice the number reported earlier, thus fewer parasitoids will be needed to regulate an estimated population of the hosts.   相似文献   

15.
To determine and compare innate preferences of the parasitoid speciesCotesia glomerata andC. rubecula for different plant-herbivore complexes, long-range (1-m) foraging behavior was studied in dual-choice experiments in a wind tunnel. In this study we tested the hypothesis that naive females of the specialistC. rubecula should show more pronounced preferences for different plant-herbivore complexes than females of the generalistC. glomerata. The herbivore species used were the pieridsPieris brassicae, P. rapae, P. Napi, andAporia crataegi and the nonhostsPlutella xylostella andMamestra brassicae. All herbivore species feed mainly on cabbage and wild crucifers, exceptAporia crataegi, which feeds on species of Rosaceae. Both parasitoid species preferred herbivore-damaged plants over nondamaged plants. NeitherC. rubecula norC. glomerata discriminated between plants infested by different caterpillar species, not even between plants infested by host-and nonhost species. Both parasitoid species showed preferences for certain cabbage cultivars and plant species. No differences were found in innate host-searching behavior betweenC. glomerata andC. rubecula. The tritrophic system cabbage-caterpillars-Cotesia sp. seems to lack specificity on the herbivore level, whereas on the plant level differences in attractiveness to parasitoids were found.  相似文献   

16.
Martha S. Hunter 《Oecologia》1993,93(3):421-428
Autoparasitoid wasps lay fertilized eggs in homopteran nymphs, and these eggs develop into female primary parasitoids. Unfertilized, male-producing eggs are laid in immatures of the wasps' own or another primary parasitoid species; males then develop as secondary or hyperparasitoids. In the population of Encarsia pergandiella studied in Ithaca, NY, fertilized eggs were laid in the nymphs of the whitefly Trialeurodes packardi (primary hosts) and unfertilized eggs were laid almost exclusively in pupal females of their own species (secondary hosts). In the two years the population was studied, secondary hosts were always much less abundant than primary hosts at both sites. However, secondary hosts were parasitized at a significantly greater rate than primary hosts. In a laboratory experiment, the encounter rate of females with primary and secondary hosts was not significantly different. Moreover, there was no evidence from the field that wasps found leaves bearing secondary hosts more frequently than leaves without secondary hosts. Dissections of field-collected females showed them to be mated, and thus capable of laying both unfertilized and fertilized eggs. These results suggest that wasps did not encounter secondary hosts at a greater rate, nor were they constrained to lay unfertilized eggs, but rather secondary hosts were preferred. The oviposition sex ratios were influenced by the proportion of secondary hosts, but were less female-biased than would be predicted from the proportion of secondary hosts alone. The results do not support the predictions of Godray and Waage (1990) for either strictly host-limited autoparasitoids (sex ratio should reflect the proportion of secondary hosts) or for egg-limited autoparasitoids (sex ratio should be equal, and independent of the proportion of secondary hosts).  相似文献   

17.
Two encyrtid parasitoids, Aenasius vexans Kerrich (Hymenoptera: Encyrtidae) and Acerophagus coccois Smith (Hymenoptera: Encyrtidae), were compared for their degree of dietary specialisation and the impact this has on their foraging strategies. Both parasitoid species are significant for biological control of the cassava mealybug, Phenacoccus herreni, Cox & Williams (Homoptera: Sternorrhyncha) a major Latin American pest of cassava, Manihot esculenta Crantz, an important root crop. Host acceptance and parasitism were analysed in seven mealybug species (with different levels of polyphagy) occurring in and around cassava fields. Results demonstrate that, in this ecosystem, An. vexans is a specialist for P. herreni while Ac. coccois is a generalist on the first and second trophic level. Of the seven mealybug species, P. herreni and P. madeirensis Green were the most acceptable hosts for Ac. coccois, followed by Ferrisia virgata Cockerell. Ac. coccois did not accept the other four mealybug species.The foraging and oviposition behaviour of individual parasitoids was observed in bioassays with cassava leaves infested by P. herreni. The two species used different strategies to locate their host. Aenasius vexans spent significantly more time walking and standing on an infested leaf and examined a host longer than did Ac. coccois. Acerophagus coccois, in contrast, spent more time for oviposition. As a consequence An. vexans parasitised more hosts in a given time than did Ac. coccois. Because the rate of offspring production of the two species did not differ, we conclude that the gregarious Ac. coccois's strategy to deposit several eggs at once might compensate for its relatively low number of ovipostitions, compared with the solitary An. vexans. These findings suggest that, given the advantages and limitations of each species, a multi-species approach to biological control of P. herreni may yield best results.  相似文献   

18.
The influence of plant architecture, host colony size, and host colony structure on the foraging behaviour of the aphid parasitoidAphidius funebris Mackauer (Hymenoptera: Aphidiidae) was investigated using a factorial experimental design. The factorial design involved releasing individual parasitoid females in aphid colonies consisting of either 10 or 20 individuals ofUroleucon jaceae L. (Homoptera: Aphididae) of either only larval instar L3 or a mixture of host instars, both on unmanipulated plants and on plants that had all leaves adjacent to the colony removed. Interactions between the parasitoid and its host were recorded until the parasitoid had left the plant. The time females spent on the host plant and the number of eggs laid varied greatly among females. Host colony size significantly affected patch residence time and the number of contacts between parasitoids and aphids. Plant architecture influenced the time-budget of the parasitoids which used leaves adjacent to the aphid colony for attacking aphids. Female oviposition rate was higher on unmanipulated plants than on manipulated plants. No further significant treatment effects on patch residence time, the number of contacts, attacks or ovipositions were found. Oviposition success ofA. funebris was influenced by instar-specific host behaviour. Several rules-of-thumb proposed by foraging theory did not account for parasitoid patch-leaving behaviour.  相似文献   

19.
Abstract The parasitoids in the genera of Encarsia and Eretmocerus (Hymenoptera: Aphelinidae) are important biological control agents of whiteflies, and some of them not only parasitize hosts but also kill them with strong host‐feeding capacity. Two whitefly parasitoid species, Encarsia sophia and Eretmocerus melanoscutus were examined to determine if mating and host density affected their host feeding and parasitism. The whitefly host, Bemisia tabaci, was presented to these two wasp species in densities of 10, 20, 30, 40, 50 and 60 third‐instar nymphs per clip cage. Mated whitefly parasitoid females fed on more hosts than unmated females under a range of host densities (under all six host densities for En. sophia; under the densities of 40 nymphs or more for Er. melanoscutus). Meanwhile, mated females parasitized more whitefly nymphs than unmated females under all host densities for both species. With increase of host density, mated or unmated Er. melanoscutus females killed more hosts by host feeding and parasitism. Mated En. sophia females killed more hosts by host feeding with increase of host density, whereas unmated females did not parasitze whitefly nymphs at all. Our results suggest that only mated female parasitoids with host‐feeding behavior should be released in crop systems to increase their bio‐control efficiency.  相似文献   

20.
We compared the foraging strategies of two key braconid endoparasitoids of the tobacco budworm (Heliothis virescens Fab.), Cardiochiles nigriceps Vier. and Microplitis croceipes Cresson, that differ in host and habitat range but otherwise share comparable, overlapping niches. The most important host-location cues by far for both species were materials associated with damaged plants. Both species demonstrated a significant preference for volatiles released from plants damaged by H. virescens larvae over those released from undamaged tobacco and cotton plants. In choice experiments with damaged tobacco versus cotton, M. croceipes showed a significant preference for cotton plants. In contrast, C. nigriceps preferred damaged tobacco plants. Plant compounds provoked a strong response even when released from systemically induced plants (from which damaged leaves, host, and host by-products were removed). C. nigriceps appears to have a much keener ability to locate hosts over long distances than M. croceipes. This observation may be related to the highly specialized nature of this parasitoid. The possible adaptive significance of the foraging behaviors of these two parasitoids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号