首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
Although the common carp (Cyprinus carpio), an invasive benthic fish from Eurasia, has long been strongly implicated in the disappearance of vegetative cover and reduced waterfowl abundance in North American shallow lakes, the details of this relationship are obscure. This study documented ecological changes in a recently restored shallow lake (Hennepin and Hopper Lakes, IL, USA) at a time that it was experiencing a large increase in its carp population. We estimated the abundance and biomass of carp 7 years after this lake had been restored and then back-calculated carp population size across time while examining changes in the lake’s plant and waterfowl communities. We found that the biomass of carp remained below ~30 kg/ha for 5 years following restoration, but then increased to ~100 kg/ha in the sixth year following a strong recruitment event. Although a carp biomass of <30 kg/ha had no discernible effects on vegetative cover (which exceeded 90%) or waterfowl (which exceeded 150,000 individuals during fall censuses), the increase to 100 kg/ha was associated with a ~50% decrease in both vegetative cover and waterfowl. A further increase in carp biomass to over 250 kg/ha during the seventh year coincided with a decrease in the vegetative cover to 17% of the lake’s surface and a decline in waterfowl use to ~10% of its original value. These data suggest that the common carp is extremely damaging to the ecological integrity of shallow lakes when its density exceeds ~100 kg/ha. Since the biomass of carp in Midwestern shallow lakes commonly exceeds this value by 3–4 times, it seems likely that carp are responsible for the large-scale habitat deterioration described in many of these ecosystems. Handling editor: J. Cambray  相似文献   

2.
Plant invasions result in biodiversity losses and altered ecological functions, though quantifying loss of multiple ecosystem functions presents a research challenge. Plant phylogenetic diversity correlates with a range of ecosystem functions and can be used as a proxy for ecosystem multifunctionality. Laurentian Great Lakes coastal wetlands are ideal systems for testing invasive species management effects because they support diverse biological communities, provide numerous ecosystem services, and are increasingly dominated by invasive macrophytes. Invasive cattails are among the most widespread and abundant of these taxa. We conducted a three‐year study in two Great Lakes wetlands, testing the effects of a gradient of cattail removal intensities (mowing, harvest, complete biomass removal) within two vegetation zones (emergent marsh and wet meadow) on plant taxonomic and phylogenetic diversity. To evaluate native plant recovery potential, we paired this with a seed bank emergence study that quantified diversity metrics in each zone under experimentally manipulated hydroperiods. Pretreatment, we found that wetland zones had distinct plant community composition. Wet meadow seed banks had greater taxonomic and phylogenetic diversity than emergent marsh seed banks, and high‐water treatments tended to inhibit diversity by reducing germination. Aboveground harvesting of cattails and their litter increased phylogenetic diversity and species richness in both zones, more than doubling richness compared to unmanipulated controls. In the wet meadow, harvesting shifted the community toward an early successional state, favoring seed bank germination from early seral species, whereas emergent marsh complete removal treatments shifted the community toward an aquatic condition, favoring floating‐leaved plants. Removing cattails and their litter increased taxonomic and phylogenetic diversity across water levels, a key environmental gradient, thereby potentially increasing the multifunctionality of these ecosystems. Killing invasive wetland macrophytes but leaving their biomass in situ does not address their underlying mechanism of dominance and is less effective than more intensive treatments that also remove their litter.  相似文献   

3.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

4.
Although partial migration, a phenomenon in which some individuals in a population conduct seasonal migrations while others remain resident, is common among animals, its importance in facilitating biological invasions has not been demonstrated. To illustrate how partial migration might facilitate invasions in spatially complex habitats, we developed an individual‐based model of common carp Cyprinus carpio in systems of lakes and winterkill‐prone marshes in the Upper Mississippi River Basin (UMRB). Our model predicted that common carp are unable to become invasive in lakes of the UMRB unless they conduct partial migrations into winterkill‐prone marshes in which recruitment rates are high in the absence of native predators that forage on carp eggs and larvae. Despite low dispersal rates of juveniles and higher mortality rates of migrants, partial migration was adaptive across a wide range of migration rates and winterkill frequencies. Partial migration rates as low as 10% and winterkill occurrence as infrequent as once in 20 years were sufficient to cause invasiveness because of carp's reproductive potential and longevity. Consistent with the results of our model, empirical data showed that lake connectivity to winterkill‐prone marshes was an important driver of carp abundance within the study region. Our results demonstrate that biological invasions may be driven by a small, migratory contingent of a population that exploits more beneficial reproductive habitats.  相似文献   

5.
6.
Intraspecific diversity and dominant genotypes resist plant invasions   总被引:1,自引:1,他引:0  
Numerous studies have asked whether communities with many species deter invasions more so than do species-poor communities or whether dominant species deter invasion by colonizing species. However, little is known about whether high intraspecific diversity can deter biological invasions or whether particular genotypes might deter invasions. In this study, we present experimental evidence that intraspecific diversity and particular genotypes of tall goldenrod, Solidago altissima , can act as a barrier to colonization by new species. We found that biomass of colonizing species was negatively correlated with genotypic diversity, and particular genotypes affected the richness, cover, and biomass of colonizing species. Stem density of S. altissima increased with genotypic diversity and varied among genotypes, suggesting that stem density is a key mechanism in limiting colonization dynamics in this system. Our results indicate that the loss of intraspecific diversity within a dominant plant species can increase susceptibility to plant invasions.  相似文献   

7.
Biological invasions often have contrasting consequences with reports of invasions decreasing diversity at small scales and facilitating diversity at large scales. Thus, previous literature has concluded that invasions have a fundamental spatial scale‐dependent relationship with diversity. Whether the scale‐dependent effects apply to vertebrate invaders is questionable because studies consistently report that vertebrate invasions produce different outcomes than plant or invertebrate invasions. Namely, vertebrate invasions generally have a larger effect size on species richness and vertebrate invaders commonly cause extinction, whereas extinctions are rare following invertebrate or plant invasions. In an agroecosystem invaded by a non‐native ungulate (i.e., feral swine, Sus scrofa), we monitored species richness of native vertebrates in forest fragments ranging across four orders of magnitude in area. We tested three predictions of the scale‐dependence hypothesis: (a) Vertebrate species richness would positively increase with area, (b) the species richness y‐intercept would be lower when invaded, and (c) the rate of native species accumulation with area would be steeper when invaded. Indeed, native vertebrate richness increased with area and the species richness was 26% lower than should be expected when the invasive ungulate was present. However, there was no evidence that the relationship was scale dependent. Our data indicate the scale‐dependent effect of biological invasions may not apply to vertebrate invasions.  相似文献   

8.
9.
Dynamics of submerged macrophyte populations in response to biomanipulation   总被引:7,自引:0,他引:7  
1. A 6‐year study (1992–97) of changes in submerged vegetation after biomanipulation was carried out in the eutrophicated Lake Finjasjön, Southern Sweden. Ten sites around the lake were revisited each year. At each site five samples of above‐ground biomass were taken at 10 cm water depth intervals. An investigation of the seed bank at the 10 sites, and a grazing experiment where birds and large fish were excluded was also conducted. 2. Between 1992 and 1996, in shallow areas (water depth < 3 m), vegetation cover increased from < 3 to 75% and above‐ground biomass from < 1 to 100 g DW m–2. Mean outer water depth increased from 0.3 to 2.5 m. Elodea canadensis and Myriophyllum spicatum accounted for > 95% of the increase in biomass and plant cover. The following year (1997), however, cover and above‐ground biomass decreased, mainly attributable to the total disappearance of E. canadensis. Secchi depth increased after biomanipulation until 1996, but decreased again in 1997. 3. Total and mean number of submerged species increased after biomanipulation, probably as a result of the improved light climate. However, after the initial increase in species number there was a decrease during the following years, possibly attributed to competition from the rapidly expanding E. canadensis and M. spicatum. The lack of increase in species number after the disappearance of E. canadensis in 1997 implies that other factors also affected species richness. 4. A viable seed bank was not necessary for a rapid recolonization of submerged macrophytes, nor did grazing by waterfowl or fish delay the re‐colonization of submerged macrophytes. 5. Submerged macrophytes are capable of rapid recolonization if conditions improve, even in large lakes such as Finjasjön (11 km2). Species that spread by fragments will increase rapidly and probably outcompete other species. 6. The results indicate that after the initial Secchi depth increase, probably caused by high zooplankton densities, submerged vegetation further improved the light climate. The decrease in macrophyte biomass in 1997 may have caused the observed increase in phosphorus and chlorophyll a, and the decrease in Secchi depth. We suggest that nutrient competition from periphyton, attached to the macrophytes, may be an important factor in limiting phytoplankton production, although other factors (e.g. zooplankton grazing) are also of importance, especially as triggers for the shift to a clear‐water state.  相似文献   

10.
Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta‐analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non‐native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non‐native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm‐invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long‐lasting effects on ecosystem functioning.  相似文献   

11.
SUMMARY 1. Silver carp, Hypophthalmichthys molitrix (Val.), feeds on both phyto- and zooplankton and has been used in lake biomanipulation studies to suppress algal biomass. Because reports on the effects of silver carp on lake food webs have been contradictory, we conducted an enclosure experiment to test how a moderate biomass of the fish (10 g wet weight m−3) affects phytoplankton and crustacean zooplankton in a mesotrophic temperate reservoir.
2. Phytoplankton biomass <30 μm and particulate organic carbon (POC) <30 μm were significantly higher in enclosures with silver carp than in enclosures without fish, whereas Secchi depth was lower. Total copepod biomass declined strongly in both treatments during the experiment, but it was significantly higher in fish-free enclosures. Daphnid biomass was also consistently higher in enclosures without fish, although this effect was not significant. However, the presence of fish led to a fast and significant decrease in the size at maturity of Daphnia galeata Sars. Thus, the moderate biomass of silver carp had a stronger negative effect on cladoceran zooplankton than on phytoplankton.
3. Based on these results and those of previous studies, we conclude that silver carp should be used for biomanipulation only if the primary aim is to reduce nuisance blooms of large phytoplankton species (e.g. cyanobacteria) that cannot be effectively controlled by large herbivorous zooplankton. Therefore, stocking of silver carp appears to be most appropriate in tropical lakes that are highly productive and naturally lack large cladoceran zooplankton.  相似文献   

12.
Habitat loss is the main driver of the current high rate of species extinction, particularly in tropical forests. Understanding the factors associated with biodiversity loss, such as the extinction of species interactions and ecological functions, is an urgent priority. Here, our aim was to evaluate how landscape‐scale forest cover influences fruit biomass comparing different tree functional groups. We sampled 20 forest fragments located within landscapes with forest cover ranging from 2 to 93 percent in the Atlantic forest of southern Bahia, Brazil. In each fragment, we established five plots of 25 × 4 m and carried out phenological observations on fleshy fruit throughout 1 year on all trees ≥5 cm dbh. We estimated fruit availability by direct counting of all fruits and derived fruit biomass from this count. We used spatial mixed linear models to evaluate the effects of forest cover on species richness, abundance, and fruit biomass. Our results indicated that forest cover was the main explanatory variable and negatively influenced the total richness and abundance of zoochoric and shade‐tolerant but not shade‐intolerant species. A linear model best explained variations in richness and abundance of total and shade‐tolerant species. We also found that forest cover was positively correlated with the fruit biomass produced by all species and by the shade‐tolerant assemblages, with linear models best explaining both relationships. The loss of shade‐tolerant species and the lower fruit production in fragments with lower landscape‐scale forest cover may have implications for the maintenance of frugivore, seed dispersal service, and plant recruitment.  相似文献   

13.
Habitat modification and biological invasions are key drivers of global environmental change. However, the extent and impact of exotic plant invasions in modified tropical landscapes remain poorly understood. We examined whether logging drives exotic plant invasions and whether their combined influences alter understory plant community composition in lowland rain forests in Borneo. We tested the relationship between understory communities and local‐ and landscape‐scale logging intensity, using leaf area index (LAI) and aboveground biomass (AGB) data from 192 plots across a logging‐intensity gradient from primary to repeatedly logged forests. Overall, we found relatively low levels of exotic plant invasions, despite an intensive logging history. Exotic species were more speciose, had greater cover, and more biomass in sites with more local‐scale canopy loss. Surprisingly, though, exotic species invasion was not related to either landscape‐scale canopy loss or road configuration. Moreover, logging and invasion did not seem to be acting synergistically on native plant composition, except that seedlings of the canopy‐dominant Dipterocarpaceae family were less abundant in areas with higher exotic plant biomass. Current low levels of invasion, and limited association with native understory community change, suggest there is a window of opportunity to manage invasive impacts. We caution about potential lag effects and the possibly severe negative impacts of exotic plant invasions on the long‐term quality of tropical forest, particularly where agricultural plantations function as permanent seed sources for recurrent dispersal along logging roads. We therefore urge prioritization of strategic management plans to counter the growing threat of exotic plant invasions in modified tropical landscapes.  相似文献   

14.
  1. Biological invasions can greatly alter ecological communities, affecting not only the diversity and abundance but also composition of invaded assemblages. This is because invaders’ impacts are mediated by characteristics of resident species: some may be highly sensitive to invader impacts while others are unaffected or even facilitated. In some cases, this can result in invasive species promoting further invasions; in particular, herbivory by introduced animals has been shown to disproportionately harm native plants, which can indirectly benefit non-native plants. Here, we investigated whether such patterns emerged through the effects of an invasive fish species on lake plant communities.
  2. Specifically, we tested whether invasion of Minnesota (U.S.A.) lakes by Cyprinus carpio (common carp), an omnivorous, benthivorous fish known to reduce abundance and richness of aquatic plants, differentially affected native versus non-native plant species. We applied statistical models to a large, long-term monitoring dataset (206 macrophyte taxa recorded in 913 lakes over a 20-year time period) to test whether carp altered community composition, to identify which macrophyte species were most sensitive to carp and determine whether species characteristics predicted carp sensitivity, and to characterise consequences of carp invasion on lake-level vegetation attributes.
  3. We found that carp exerted strong selective pressure on community composition. Native macrophytes, those with a more aquatic growth form, and those considered less tolerant of disturbance (i.e. higher coefficients of conservatism) were more sensitive to carp. Conversely, no introduced macrophytes exhibited sensitivity to carp and all had higher probabilities of occurrence as carp abundance increased. The net effect of carp invasion was a shift toward less species-rich plant communities characterised by more non-native and disturbance-tolerant species.
  4. These results have several implications for conservation and management. First, they reinforce the need to prevent further spread of carp outside of their native range. Where carp have already established, their control should be incorporated into efforts to restore aquatic vegetation; this may be an essential step for recovering particular plant species of high conservation importance. Furthermore, reducing carp abundance could have ancillary benefits of reducing dominance by invasive plant species. Lastly, where carp cannot be eliminated, managers should target native macrophytes that are relatively tolerant of carp in shoreline plantings and other revegetation efforts.
  相似文献   

15.
We assessed effects of groundwater pumping to elevate lake levels on lake water chemistry and fish population metrics at seven Florida lakes. Following groundwater pumping, lake level fluctuation was reduced and lake water samples increased in mean pH, total alkalinity, total phosphorus, chloride and Secchi depth compared to historical means, indicating a close resemblance to the chemistry of aquifer water in the region. Fish community metrics from the augmented lakes were compared to 36 non-augmented lakes in Florida. The mean values for catch per unit effort, species richness and biomass of harvestable fishes, determined by electrofishing, were lower in augmented lakes compared to non-augmented lakes. Canonical correspondence analysis (CCA) indicated a high probability of a low abundance of individual species in augmented lakes compared to a majority of non-augmented lakes. The augmented lake with the lowest pumping rate exhibited less of a shift in limnological variables from historical values, and had fish population characteristics more closely resembling those of non-augmented lakes. Thus, reduced volumes of groundwater introduction could lower impacts to limnological and fish population characteristics. Augmentation allows for lakes to be utilized for recreational activities, and without augmentation some lakes in central Florida would likely go dry due to groundwater withdrawals for water supply. Therefore, allowing more natural water level fluctuations and possible reductions in total pumpage are recommended to reduce impacts to limnological and fish population characteristics, while still allowing sufficient groundwater pumping to preserve lake habitats.  相似文献   

16.
17.
Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie   总被引:1,自引:0,他引:1  
Warm‐season (C4) grasses commonly dominate tallgrass prairie restorations, often at the expense of subordinate grasses and forbs that contribute most to diversity in this ecosystem. To assess whether the cover and abundance of dominant grass species constrain plant diversity, we removed 0, 50, or 100% of tillers of two dominant species (Andropogon gerardii or Panicum virgatum) in a 7‐year‐old prairie restoration. Removing 100% of the most abundant species, A. gerardii, significantly increased light availability, forb productivity, forb cover, species richness, species evenness, and species diversity. Removal of a less abundant but very common species, P. virgatum, did not significantly affect resource availability or the local plant community. We observed no effect of removal treatments on critical belowground resources, including inorganic soil N or soil moisture. Species richness was inversely correlated with total grass productivity and percent grass cover and positively correlated with light availability at the soil surface. These relationships suggest that differential species richness among removal treatments resulted from treatment induced differences in aboveground resources rather than the belowground resources. Selective removal of the dominant species A. gerardii provided an opportunity for seeded forb species to become established leading to an increase in species richness and diversity. Therefore, management practices that target reductions in cover or biomass of the dominant species may enhance diversity in established and grass‐dominated mesic grassland restorations.  相似文献   

18.
19.

Aim

Studies investigating the determinants of plant invasions rarely examine multiple factors and often only focus on the role played by native plant species richness. By contrast, we explored how vegetation structure, landscape features and climate shape non-native plant invasions across New Zealand in mānuka and kānuka shrublands.

Location

New Zealand.

Method

We based our analysis on 247 permanent 20 × 20-m plots distributed across New Zealand surveyed between 2009 and 2014. We calculated native plant species richness and cumulative cover at ground, understorey and canopy tiers. We examined non-native species richness and mean species ground cover in relation to vegetation structure (native richness and cumulative cover), landscape features (proportion of adjacent anthropogenic land cover, distance to nearest road or river) and climate. We used generalized additive models (GAM) to assess which variables had greatest importance in determining non-native richness and mean ground cover and whether these variables had a similar effect on native species in the ground tier.

Results

A positive relationship between native and non-native plant species richness was not due to their similar responses to the variables examined in this study. Higher native canopy richness resulted in lower non-native richness and mean ground cover, whereas higher native ground richness was associated with higher native canopy richness. Non-native richness and mean ground cover increased with the proportion of adjacent anthropogenic land cover, whereas for native richness and mean ground cover, this relationship was negative. Non-native richness increased in drier areas, while native richness was more influenced by temperature.

Main Conclusions

Adjacent anthropogenic land cover seems to not only facilitate non-native species arrival by being a source of propagules but also aids their establishment as a result of fragmentation. Our results highlight the importance of examining both cover and richness in different vegetation tiers to better understand non-native plant invasions.  相似文献   

20.
Patterns of fish species richness in China's lakes   总被引:1,自引:0,他引:1  
Aim To document the patterns of fish species richness and their possible causes in China's lakes at regional and national scales. Location Lakes across China. Methods We compiled data of fish species richness, limnological characteristics and climatic variables for 109 lakes across five regions of China: East region, Northeast region, Southwest region, North‐Northwest region, and the Tibetan Plateau. Correlation analyses, regression models and a general linear model were used to explore the patterns of fish species richness. Results At the national scale, lake altitude, energy availability (potential evapotranspiration, PET) and lake area explained 79.6% of the total variation of the lake fish species richness. The determinants of the fish richness pattern varied among physiographic regions. Lake area was the strongest predictor of fish species richness in the East and Southwest lakes, accounting for 22.2% and 82.9% of the variation, respectively. Annual PET explained 68.7% of the variation of fish richness in the Northeast lakes. Maximum depth, mineralization degree, and lake area explained 45.5% of the fish variation in the lakes of the North‐Northwest region. On the Tibetan Plateau, lake altitude was the first predictor variable, interpreting 32.2% of the variation. Main conclusions Lake altitude was the most important factor explaining the variation of fish species richness across China's lakes, and accounted for 74.5% of the variation. This may stem in part from the fact that the lakes investigated in our study span the largest altitudinal range anywhere in the world. The effects of the lake altitude on fish species richness can be separated into direct and indirect aspects due to its collinearity with PET. We also found that the fish diversity and its determinants were scale‐dependent. Fish species richness was probably energy‐determined in the cold region, while it was best predicted by the lake area in the relatively geologically old region. The independent variables we used only explained a small fraction of the variations in the lake fish species richness in East China and the Tibetan Plateau, which may be due to the effects of human activity and historical events, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号