首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
硫酸镁对大鼠海马CA1区神经元钠电流的抑制作用   总被引:5,自引:2,他引:3  
Sang N  Meng ZQ 《生理学报》2002,54(6):539-543
利用全细胞膜片钳技术研究了硫酸镁 (MgSO4 )对大鼠海马CA1区神经元钠电流的影响。结果表明 ,MgSO4 可浓度依赖和电压依赖地抑制钠电流 ,半数抑制浓度为 4 0 5mmol/L。这一抑制作用与刺激频率无关。结果还表明 ,4mmol/LMgSO4 不影响钠电流的失活过程 ,却使半数激活电压由 - 5 5 8± 6 8mV变为 - 3 4 2± 6 2mV (n =8,P <0 0 1) ,而激活曲线的斜率因子不变。结果提示 ,MgSO4 抑制大鼠海马CA1区神经元的钠电流可能是其抗缺血缺氧造成的中枢神经系统损伤的机制之一  相似文献   

2.
弱激光对大鼠海马神经元钠通道特性的影响   总被引:6,自引:0,他引:6  
利用波长670nm、功率5mW的半导体激光器照射急性分离的大鼠海马CA3区锥体神经元,应用全细胞膜片钳技术研究其电压门控Na 通道的特性.实验发现:弱激光作用5min时,Na 通道激活电位和峰值电位开始向负电位方向移动,7min激光作用达稳定;激光照射对Na 通道电流峰值无影响,对照组和激光照射组峰值电流密度分别为(-383.51±26.93)pA/pF和(-368.36±33.14)pA/pF(n=8,P>0.05);激光作用降低了Na 通道的激活阈值电位和峰值电位,对照组通道电流在-40mV激活,-30mV达峰值,激光照射组通道电流在-60mV激活,-40mV达峰值;激光照射改变了Na 通道半数激活电压和斜率因子,对照组和激光照射组的半数激活电压分别为(-42.091±1.537)mV和(-54.971±1.846)mV(n=8,P<0.01),斜率因子分别为(1.529±0.667)mV和(2.634±0.519)mV(n=8,P<0.05).结果表明,弱激光照射海马神经元可改变Na 通道的激活特性,从而影响动作电位的去激化过程,进而会引起神经元细胞生理功能发生变化.  相似文献   

3.
桑楠  孟紫强 《动物学报》2003,49(1):73-79
本文利用全细胞膜片钳技术研究了SO2 代谢衍生物———NaHSO3 和Na2 SO3 (二者分子比为 1∶3)对大鼠海马CA1区神经元瞬间外向钾电流 (IA)和延迟整流钾电流 (IK)的影响。结果表明 ,SO2 代谢衍生物可显著增大IA 和IK,且呈剂量依赖性关系 ,使IA 和IK 增大 5 0 %的剂量分别为 2 6 19μmol/L和 14 5 0 μmol/L。此外还与电压呈依赖性关系 ,但不具有频率依赖性。结果还表明 ,10 μmol/LSO2 代谢衍生物不影响IA 的激活过程 ,而对IK 的激活过程有非常显著的影响 ,给药前后IK 的半数激活电压分别为 17 6 4± 7 31mV和 13 43± 2 0 0mV (n=10 ,P <0 0 1) ,但不改变其斜率因子。另外 ,10 μmol/LSO2 代谢衍生物还非常显著地影响IA 的失活过程 ,给药前后其半数失活电压分别为 - 6 5 93± 1 97mV和 - 5 9 2 2± 3 83mV (n =10 ,P <0 0 1) ,但不改变其斜率因子。由此推断 ,SO2 代谢衍生物增大大鼠海马CA1区神经元的IA 和IK,促进IK 的激活过程 ,并抑制IA 的失活过程 ,可导致胞内K 通过K 通道的外流增加 ,胞内K 浓度降低 ,造成中枢神经元功能紊乱 ,诱导神经细胞凋亡。这意味着SO2 代谢衍生物对中枢神经系统具有损伤作用 ,从而提示大气SO2 污染可能与一些中枢神经系统疾病的发生以及衰老有关 [动物学报 49(1) :73  相似文献   

4.
焦亚硫酸钠对大鼠海马CA1区神经元钾电流的影响   总被引:2,自引:0,他引:2  
目的:探讨焦亚硫酸钠(SMB)、二氧化硫(SO2)及其体内衍生物(亚硫酸盐和亚硫酸氢盐)对中枢神经元钾通道的影响及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GPx)相应的保护作用.方法:采用全细胞膜片钳技术研究了SMB对大鼠海马CA1区神经元瞬间外向钾电流(IA)和延迟整流钾电流(IK)的影响.结果:①焦亚硫酸钠可增大全细胞IA和IK,且具剂量依赖性和电压依赖性,使IA和IK增大50%的剂量分别为15.8 μmol/L和11.5μmol/L;②10 μmol/L的SMB均可显著影响IA和IK的激活过程,给药前后IA的半数激活电压分别为(-12.6±1.6)mV和(-7.0±1.3)mV(n=8,P<0.01),IK的半数激活电压分别为(10.8±0.9)mV和(21.6±0.7)mV(n=8,P<0.01),但不改变其斜率因子;③10μmol/L的SMB还非常显著地影响IA的失活过程,给药前后其半数失活电压分别为(-97.0±1.1)mV和(-84.4±3.3)mV(n=8,P<0.01),但也不改变其斜率因子;④抗氧化酶SOD(1×106U/L)、CAT(2×106U/L)及GPx(105U/L)均可使SMB(10μmol/L)增大的IA和IK部分恢复.结论:SMB可显著增大IA和IK,抑制IA和IK的激活过程及IA的失活过程,从而导致胞内K 的外流增加,使胞内K 浓度降低,从而对中枢神经元功能产生不利影响.  相似文献   

5.
运用全细胞膜片钳技术研究慢性铅暴露和急性给二氧化硫衍生物对大鼠海马神经元钠电流的影响,结果发现,慢性铅暴露组钠电流在-70mV激活,-30mV达到峰值;对照组钠电流在-70mV激活,-40mV达到峰值.两组峰值不具有显著性差异.急性给二氧化硫衍生物于慢性铅暴露组,钠电流在-80mV开始激活,-40mV达到峰值,I-V曲线显著下移.慢性铅暴露使穿越钠通道离子的绝对数量稍微有些减少,但不具有统计学差异;二氧化硫可使慢性铅暴露的海马神经元的INa显著增大.慢性铅暴露推迟了INa达到峰值的时间,但不影响失活时间常数;急性加入二氧化硫衍生物不改变慢性铅暴露达到峰值的时间,却使失活时间常数显著延长.慢性铅暴露使INa的激活曲线右移,失活曲线左移;二氧化硫衍生物使慢性铅暴露的海马神经元上的INa的激活和失活曲线都往超极化方向移动.这些结果表明,铅和二氧化硫改变了细胞膜钠通道对于电压的感应,延长了钠通道的开放时程,这些可能是这两种大气污染物联合损伤海马神经元的作用机制之一.  相似文献   

6.
运用全细胞膜片钳技术研究二氧化硫衍生物对大鼠背根神经元瞬间外向钾电流(IA和ID)和延迟整流钾电流(IK)的影响。结果发现二氧化硫衍生物剂量依赖性地增大钾通道的电导,电压依赖性地增大钾电流的幅度,且这种增大作用部分可逆。二氧化硫非常显著地使延迟整流钾电流的激活过程向超极化方向移动,使瞬间外向钾电流的失活过程向去极化方向移动。10μmol/L二氧化硫衍生物作用前后,延迟整流钾电流的半数激活电压分别是(20.3±2.1)mV和(15.0±1.5)mV;IA和ID的半数失活电压分别朝去极化方向移动了6mV和7.4mV。这些结果表明二氧化硫改变了钾通道的特性,改变了神经元的兴奋性。  相似文献   

7.
目的和方法 :采用大鼠海马脑片盲法膜片钳全细胞记录技术研究CA1区锥体神经元电压门控性Ca2 通道的动力学特征。结果 :大鼠海马脑片CA1区锥体神经元电压门控性Ca2 通道电流具有如下特点 :①激活的阈电位偏低 ,为 (- 4 9.3± 8.6 )mV ,范围为 - 6 5~ - 30mV(n =2 3)。②衰减时间常数τ值较大 ,且变化范围大 (10 0~ 70 0ms) (n =12 ) ,并且衰减具有Ca2 电流幅值的依赖性 ,③稳态失活呈现电压依赖性 ,半失活电压为 (- 5 5 .4± 9.7)mV ,斜率因子为 (5 .3± 0 .9)mV(n =10 )。④当细胞外Ca2 浓度为 2 .5mmol/L时 ,Ca2 通道的反转电位为 (5 5±13)mV(n =10 )。⑤尾电流成分较为单一 ,不表现电压依赖性。另外 ,Ca2 电流对戊脉胺及双氢吡啶类化合物硝苯地平均不敏感。结论 :根据上述Ca2 电流特征 ,海马脑片CA1区锥体神经元上的Ca2 通道主要以N型为主  相似文献   

8.
二氧化硫代谢衍生物对大鼠海马CA1区神经元钠电流的影响   总被引:14,自引:1,他引:13  
Meng ZQ  Sang N 《生理学报》2002,54(3):267-270
实验采用全细胞膜片钳技术 ,研究了SO2 代谢衍生物亚硫酸钠和亚硫酸氢钠 (两者分子比为 3∶1)对大鼠海马CA1区神经元钠电流的影响。结果表明 ,SO2 代谢衍生物可剂量依赖性地增大钠电流 ,剂量为 10和 10 0μmol/L时 ,钠电流分别增大 5 0 .5 9± 19.0 8%和 82 .0 6± 18.5 1%(n =15 ) ;此外还与电压呈依赖性关系 ,但不具有频率依赖性 ;10 μmol/LSO2 代谢衍生物不影响钠电流的激活过程 ,却非常显著地影响其失活过程 ,作用前后的半数失活电压分别为 - 6 9.71± 4.6 7和 - 5 3.2 7± 4.95mV (n =10 ,P <0 .0 1) ,但不改变失活曲线的斜率因子。实验结果提示 ,SO2 衍生物具有类似神经毒物的作用 ,大气SO2 污染可能与一些中枢神经系统疾病的发生有关。  相似文献   

9.
目的:研究孤啡肽(N/OFQ)对大鼠顶叶皮层神经元瞬时外向钾电流(IA)的影响,初步探讨其作用的通道动力学机制。方法:采用全细胞膜片钳技术,观察N/OFQ对急性分离的大鼠顶叶皮层神经元IA的作用。结果:①0.1μmol/L N/OFQ使IA幅值由给药前的(5356.1±361.6)pA下降为(4113.3±312.7)pA,抑制率为23.20%±2.17%(P〈0.01,n=10)。②0.1μmol/L N/OFQ使IA的电流-电压(I-V)曲线降低(P〈0.01,n=10)。③0.1μmol/L N/OFQ使,IA激活曲线的半数激活电压(V1/2)和斜率因子(κ)分别由给药前的(-9.2±2.5)mV和(20.4±2.3)mV变为给药后的(30.6±3.7)mV(P〈0.01,n=8)和(22.6±2.1)mV(P〉0.05,n=8)。④0.1μmol/L N/OFQ使IA失活曲线的半数失活电压(V1/2)和斜率因子(κ)分别由给药前的(-64.1±3.2)mV和(21.5±2.1)mV变为给药后的(-55.9±1.9)mV(P〈0.05,n=5)和(19.6±2.2)mV(P〉0.05,n=5)。结论:N/OFQ可抑制大鼠顶叶皮层神经元IA,使其激活曲线、失活曲线均右移。  相似文献   

10.
目的和方法:采用全细胞式膜片钳技术,观察花生四烯酸(AA)对大鼠顶叶皮层神经元延迟整流钾电流(Ik)的影响。结果:①AA(10μmol/L)对大鼠顶叶皮层神经元Ik有抑制作用,抑制率为33.9%±8.74%(P<0.01)。②AA可使IK激活曲线的斜率因子变大且曲线向右移动,IK激活曲线的V1/2和k分别由给药前的(-55.3±0.9)mV和(10.3±0.4)mV,变为给药后的(-50.8±2.4)mV和(21.0±3.5)mV。③AA可使IK失活曲线斜率因子变大且曲线向左移动,IK失活曲线的V1/2和k分别由给药前的(-45.3±0.3)mV和(15.6±0.8)mV,变为给药后的(-70.9±1.9)mV和(36.5±2.1)mV。结论:花生四烯酸可抑制大鼠顶叶皮层神经元的延迟整流钾电流,并影响其动力学特征。  相似文献   

11.
Liu M  Gong B  Qi Z 《Cell biology international》2008,32(12):1514-1520
The Kv2.1 potassium channel is a principal component of the delayed rectifier I(K) current in the pyramidal neurons of cortex and hippocampus. We used whole-cell patch-clamp recording techniques to systemically compare the electrophysiological properties between the native neuronal I(K) current of cultured rat hippocampal neurons and the cloned Kv2.1 channel currents in the CHO cells. The slope factors for the activation curves of both currents obtained at different prepulse holding potentials and holding times were similar, suggesting similar voltage-dependent gating. However, the half-maximal activation voltage for I(K) was approximately 20 mV more negative than the Kv2.1 channel in CHO cells at a given prepulse condition, indicating that the neuronal I(K) current had a lower threshold for activation than that of the Kv2.1 channel. In addition, the neuronal I(K) showed a stronger holding membrane potential and holding time-dependence than Kv2.1. The Kv2.1 channel gave a U-shaped inactivation, while the I(K) current did not. The I(K) current also had much stronger voltage-dependent inactivation than Kv2.1. These results imply that the neuronal factors could make Kv2.1 channels easier to activate. The information obtained from these comparative studies help elucidate the mechanism of molecular regulation of the native neuronal I(K) current in neurons.  相似文献   

12.
The biophysical characteristics and alpha subunits underlying calcium-independent transient outward potassium current (Ito) phenotypes expressed in ferret left ventricular epicardial (LV epi) and endocardial (LV endo) myocytes were analyzed using patch clamp, fluorescent in situ hybridization (FISH), and immunofluorescent (IF) techniques. Two distinct Ito phenotypes were measured (21-22 degrees C) in the majority of LV epi and LV endo myocytes studied. The two Ito phenotypes displayed marked differences in peak current densities, activation thresholds, inactivation characteristics, and recovery kinetics. Ito,epi recovered rapidly [taurec, -70 mV = 51 +/- 3 ms] with minimal cumulative inactivation, while Ito,endo recovered slowly [taurec, -70 mV = 3,002 +/- 447 ms] with marked cumulative inactivation. Heteropoda toxin 2 (150 nM) blocked Ito,epi in a voltage-dependent manner, but had no effect on Ito,endo. Parallel FISH and IF measurements conducted on isolated LV epi and LV endo myocytes demonstrated that Kv1.4, Kv4.2, and Kv4.3 alpha subunit expression in LV myocyte types was quite heterogenous: (a) Kv4.2 and Kv4.3 were more predominantly expressed in LV epi than LV endo myocytes, and (b) Kv1.4 was expressed in the majority of LV endo myocytes but was essentially absent in LV epi myocytes. In combination with previous measurements on recovery kinetics (Kv1.4, slow; Kv4.2/4.3, relatively rapid) and Heteropoda toxin block (Kv1.4, insensitive; Kv4.2, sensitive), our results strongly support the hypothesis that, in ferret heart, Kv4.2/Kv4.3 and Kv1.4 alpha subunits, respectively, are the molecular substrates underlying the Ito,epi and Ito,endo phenotypes. FISH and IF measurements were also conducted on ferret ventricular tissue sections. The three Ito alpha subunits again showed distinct patterns of distribution: (a) Kv1.4 was localized primarily to the apical portion of the LV septum, LV endocardium, and approximate inner 75% of the LV free wall; (b) Kv4. 2 was localized primarily to the right ventricular free wall, epicardial layers of the LV, and base of the heart; and (c) Kv4.3 was localized primarily to epicardial layers of the LV apex and diffusely distributed in the LV free wall and septum. Therefore, in intact ventricular tissue, a heterogeneous distribution of candidate Ito alpha subunits not only exists from LV epicardium to endocardium but also from apex to base.  相似文献   

13.
The influence of extracellular pH (pH(o)) on low-voltage-activated calcium channels of acutely isolated DRG neurons of rats was examined using the whole cell patch-clamp technique. It has been found that in the neurons of middle size with capacitance C=60+/-4.8 pF (mean+/-S.E., n=8) extracellular acidification from pH(o) 7.35 to pH(o) 6.0 significantly and reversibly decreased LVA calcium current densities by 75+/-3.7%, shifted potential for half-maximal activation to more positive voltages by 18.7+/-0.6 mV with significant reduction of its voltage dependence. The half-maximal potential of steady-state inactivation shifted to more positive voltages by 12.1+/-1.7 mV (n=8) and also became less voltage dependent. Dose-response curves for the dependence of maximum values of LVA currents on external pH in neurons of middle size have midpoint pK(a)=6.6+/-0.02 and hill coefficient h=0.94+/-0.04 (n=5). In small cells with capacitance C=26+/-3.6 pF (n=5), acidosis decreased LVA calcium current densities only by 15.3+/-1.3% and shifted potential for half-maximal activation by 5.5+/-1.0 mV with reduction of its voltage dependence. Half-maximal potential of steady-state inactivation shifted to more positive voltages by 10+/-1.6 mV (n=4) and also became less voltage dependent. Dose-response curves for the dependence of maximum values of LVA currents on external pH in neurons of small size have midpoint pK(a)=7.9+/-0.04 and hill coefficient h=0.25+/-0.1 (n=4). These two identified types of LVA currents besides different pH sensitivity demonstrated different kinetic properties. The deactivation of LVA currents with weak pH sensitivity after switching off depolarization to -30 mV had substantially longer decay time than do currents with strong pH sensitivity (tau(d) approximately 5 ms vs. 2 ms respectively). It was found that the prolongation of depolarization steps slows the subsequent deactivation of T-type currents in small DRG neurons. Deactivation traces in these neurons were better described by the sum of two exponentials. Thus, we suppose that T-type channels in small DRG neurons are presented mostly by alpha1I subunit. We suggest that these two types of LVA calcium channels with different sensitivity to external pH can be differently involved in the origin of neuropathic changes.  相似文献   

14.
The electrophysiological properties of HK2 (Kv1.5), a K+ channel cloned from human ventricle, were investigated after stable expression in a mouse Ltk- cell line. Cell lines that expressed HK2 mRNA displayed a current with delayed rectifier properties at 23 degrees C, while sham transfected cell lines showed neither specific HK2 mRNA hybridization nor voltage-activated currents under whole cell conditions. The expression of the HK2 current has been stable for over two years. The dependence of the reversal potential of this current on the external K+ concentration (55 mV/decade) confirmed K+ selectivity, and the tail envelope test was satisfied, indicating expression of a single population of K+ channels. The activation time course was fast and sigmoidal (time constants declined from 10 ms to < 2 ms between 0 and +60 mV). The midpoint and slope factor of the activation curve were Eh = -14 +/- 5 mV and k = 5.9 +/- 0.9 (n = 31), respectively. Slow partial inactivation was observed especially at large depolarizations (20 +/- 2% after 250 ms at +60 mV, n = 32), and was incomplete in 5 s (69 +/- 3%, n = 14). This slow inactivation appeared to be a genuine gating process and not due to K+ accumulation, because it was present regardless of the size of the current and was observed even with 140 mM external K+ concentration. Slow inactivation had a biexponential time course with largely voltage-independent time constants of approximately 240 and 2,700 ms between -10 and +60 mV. The voltage dependence of slow inactivation overlapped with that of activation: Eh = -25 +/- 4 mV and k = 3.7 +/- 0.7 (n = 14). The fully activated current-voltage relationship displayed outward rectification in 4 mM external K+ concentration, but was more linear at higher external K+ concentrations, changes that could be explained in part on the basis of constant field (Goldman-Hodgkin-Katz) rectification. Activation and inactivation kinetics displayed a marked temperature dependence, resulting in faster activation and enhanced inactivation at higher temperature. The current was sensitive to low concentrations of 4- aminopyridine, but relatively insensitive to external TEA and to high concentrations of dendrotoxin. The expressed current did not resemble either the rapid or the slow components of delayed rectification described in guinea pig myocytes. However, this channel has many similarities to the rapidly activating delayed rectifying currents described in adult rat atrial and neonatal canine epicardial myocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
蝎毒耐热蛋白对大鼠海马神经元钠通道的抑制作用   总被引:5,自引:0,他引:5  
Zhang XY  Wang Y  Zhang J  Wang JY  Zhao J  Zhang WQ  Li S 《生理学报》2007,59(3):278-284
应用全细胞膜片钳技术观察蝎毒耐热蛋白(scorpion venom heat resistant protein,SVHRP)对急性分离大鼠海马神经元电压依赖性钠通道的影响。结果表明,急性分离大鼠海马神经元产生的河豚毒素(tetrodotoxin,TTX)敏感的电压依赖性钠电流被SVHRP浓度依赖性地抑制,半数抑制浓度为(0.0034±0.0004)μg/mL,Hill常数为0.4361±0.0318;SVHRP可使钠通道稳态激活曲线向电压的正方向移动,正常TTX敏感的钠通道的半数激活电压(V1/2)为(-34.38±0.62)mV(n=16),给予0.1μg/mL的SVHRP后V1/2为(-23.96±0.41)mV(n=8,P〈0.05),斜坡因子(κ)由正常的4.52±0.52变为3.73±0.08(n=8,P〈0.05)。SVHRP亦能改变电压依赖性钠通道的稳态失活曲线,使其向电位的负方向移动,SVHRP处理前钠通道半数失活电压(V1/2)为(-32.60±1.52)mV,κ为6.73±0.51(n=16);0.1μg/mL的SVHRP处理后V1/2变为(-50.69±2.55)mV(n=8,P〈0.01),κ为5.49±0.72(n=8,P〈0.05)。结果提示,SVHRP能抑制电压依赖性钠电流,改变钠通道的动力学特性,抑制其激活,促进其失活,从而影响神经元的兴奋性,这可能是其抗癫痫的机制之一。  相似文献   

16.
Using a voltage-clamp whole-cell technique, we studied transmembrane currents in hippocampal neurons after their long-lasting cultivation. Based on the activational characteristics and data on pharmacological sensitivity, we isolated and described an A-type voltage-activated fast inactivating potassium current (FIPC). This transient FIPC was activated at −50… −40 mV and was rather sensitive to 4-aminopyridine (4-AP). Extracellular application of 5 mM 4-AP decreased the FIPC amplitude by 75%, while application of 10 mM tetraethylammonium evoked no significant changes in it. Kinetics of FIPC activation could be described by one exponent in the fourth degree. With variations of the membrane potential from −40 to 30 mV, the activation time constant varied from 2.8 to 1.5 msec. Inactivation kinetics was described by one exponent with the time constant varying from 37 msec at −45 mV to 18 msec at 40 mV. Stationary activation and inactivation curves could be described by Boltzmann's equation; a half value of the level of stationary inactivation was reached at −80 mV, while stationary activation was attained at −25 mV. Kinetics of deinactivation (from stationary inactivation) was monoexponential with the time constant of 41 msec. It is supposed that FIPC through the membrane of hippocampal neurons is provided by the type Kv4.2 potassium channels.  相似文献   

17.
A novel transient outward K(+) current that exhibits inward-going rectification (I(to.ir)) was identified in guinea pig atrial and ventricular myocytes. I(to.ir) was insensitive to 4-aminopyridine (4-AP) but was blocked by 200 micromol/l Ba(2+) or removal of external K(+). The zero current potential shifted 51-53 mV/decade change in external K(+). I(to.ir) density was twofold greater in ventricular than in atrial myocytes, and biexponential inactivation occurs in both types of myocytes. At -20 mV, the fast inactivation time constants were 7.7 +/- 1.8 and 6.1 +/- 1.2 ms and the slow inactivation time constants were 85.1 +/- 14.8 and 77.3 +/- 10.4 ms in ventricular and atrial cells, respectively. The midpoints for steady-state inactivation were -36.4 +/- 0.3 and -51.6 +/- 0.4 mV, and recovery from inactivation was rapid near the resting potential (time constants = 7.9 +/- 1.9 and 8.8 +/- 2.1 ms, respectively). I(to.ir) was detected in Na(+)-containing and Na(+)-free solutions and was not blocked by 20 nmol/l saxitoxin. Action potential clamp revealed that I(to.ir) contributed an outward current that activated rapidly on depolarization and inactivated by early phase 2 in both tissues. Although it is well known that 4-AP-sensitive transient outward current is absent in guinea pig, this Ba(2+)-sensitive and 4-AP-insensitive K(+) current has been overlooked.  相似文献   

18.
Time- and voltage-dependent components of Kv4.3 inactivation   总被引:6,自引:0,他引:6  
Kv4.3 inactivation is a complex multiexponential process, which can occur from both closed and open states. The fast component of inactivation is modulated by the N-terminus, but the mechanisms mediating the other components of inactivation are controversial. We studied inactivation of Kv4.3 expressed in Xenopus laevis oocytes, using the two-electrode voltage-clamp technique. Inactivation during 2000 ms pulses at potentials positive to the activation threshold was described by three exponents (46 +/- 3, 152 +/- 13, and 930 +/- 50 ms at +50 mV, n = 7) whereas closed-state inactivation (at potentials below threshold) was described by two exponents (1079 +/- 119 and 3719 +/- 307 ms at -40 mV, n = 9). The fast component of open-state inactivation was dominant at potentials positive to -20 mV. Negative to -30 mV, the intermediate and slow components dominated inactivation. Inactivation properties were dependent on pulse duration. Recovery from inactivation was strongly dependent on voltage and pulse duration. We developed an 11-state Markov model of Kv4.3 gating that incorporated a direct transition from the open-inactivated state to the closed-inactivated state. Simulations with this model reproduced open- and closed-state inactivation, isochronal inactivation relationships, and reopening currents. Our data suggest that inactivation can proceed primarily from the open state and that multiple inactivation components can be identified.  相似文献   

19.
Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These currents could also be recorded directly in dissociated neurons in which other ionic currents were effectively suppressed. It was concluded that the persistent current was carried by sodium ions because it was blocked by TTX, decreased in amplitude when extracellular sodium concentration was reduced, and was not blocked by cadmium. The amplitude of the persistent sodium current varied with clamp potential, being detectable at potentials as negative as -70 mV and reaching a maximum at approximately -40 mV. The maximum amplitude at -40 mV in 21 cells in slices was -0.34 +/- 0.05 nA (mean +/- 1 SEM) and -0.21 +/- 0.05 nA in 10 dissociated neurons. Persistent sodium conductance increased sigmoidally with a potential between -70 and -30 mV and could be fitted with the Boltzmann equation, g = gmax/(1 + exp[(V' - V)/k)]). The average gmax was 7.8 +/- 1.1 nS in the 21 neurons in slices and 4.4 +/- 1.6 nS in the 10 dissociated cells that had lost their processes indicating that the channels responsible are probably most densely aggregated on or close to the soma. The half-maximum conductance occurred close to -50 mV, both in neurons in slices and in dissociated neurons, and the slope factor (k) was 5-9 mV. The persistent sodium current was much more resistant to inactivation by depolarization than the transient current and could be recorded at greater than 50% of its normal amplitude when the transient current was completely inactivated. Because the persistent sodium current activates at potentials close to the resting membrane potential and is very resistant to inactivation, it probably plays an important role in the repetitive firing of action potentials caused by prolonged depolarizations such as those that occur during barrages of synaptic inputs into these cells.  相似文献   

20.
Sodium and calcium currents in dispersed mammalian septal neurons   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-gated Na+ and Ca2+ conductances of freshly dissociated septal neurons were studied in the whole-cell configuration of the patch-clamp technique. All cells exhibited a large Na+ current with characteristic fast activation and inactivation time courses. Half-time to peak current at -20 mV was 0.44 +/- 0.18 ms and maximal activation of Na+ conductance occurred at 0 mV or more positive membrane potentials. The average value was 91 +/- 32 nS (approximately 11 mS cm-2). At all membrane voltages inactivation was well fitted by a single exponential that had a time constant of 0.44 +/- 0.09 ms at 0 mV. Recovery from inactivation was complete in approximately 900 ms at -80 mV but in only 50 ms at -120 mV. The decay of Na+ tail currents had a single time constant that at -80 mV was faster than 100 microseconds. Depolarization of septal neurons also elicited a Ca2+ current that peaked in approximately 6-8 ms. Maximal peak Ca2+ current was obtained at 20 mV, and with 10 mM external Ca2+ the amplitude was 0.35 +/- 0.22 nA. During a maintained depolarization this current partially inactivated in the course of 200-300 ms. The Ca2+ current was due to the activity of two types of conductances with different deactivation kinetics. At -80 mV the closing time constants of slow (SD) and fast (FD) deactivating channels were, respectively, 1.99 +/- 0.2 and 0.11 +/- 0.03 ms (25 degrees C). The two kinds of channels also differed in their activation voltage, inactivation time course, slope of the conductance-voltage curve, and resistance to intracellular dialysis. The proportion of SD and FD channels varied from cell to cell, which may explain the differential electrophysiological responses of intracellularly recorded septal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号