首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

2.
The aim of this study was to assess the role of platelet ice microalgal communities in seeding pelagic blooms. Nutrient dynamics, microalgal biomass, photosynthetic parameters, cell densities and species succession were studied in two mesocosm experiments, designed to simulate the transition of microalgal communities from platelet ice habitat to pelagic conditions. The microalgal assemblages were dominated by diatoms, 70% of which were benthic species such as Amphiprora kufferathii, Nitzschia stellata, and Berkeleya adeliensis. Photoacclimation of benthic species was inadequate also at relatively low irradiances. Exceptional growth capacity at different light levels was observed for pelagic species such as Fragilariopsis cylindrus and Chaetoceros spp. which may be important in seeding blooms at ice breakup. Fragilariopsis cylindrus showed high growth rates both at 65 and 10% of incident light and in nutrient replete as well as in nutrient depleted conditions. Five days after inoculation, phytoplankton biomass increased and nutrient concentrations decreased in both light conditions. Nutrient uptake rates were up to 9.10 μmol L−1 d−1 of TIN in the high light tank and 6.18 μmol L−1 d−1 in the low light tank and nutrient depletion in the high light tank occurred 3 days prior to depletion in the low light tank. At nutrient depletion, biomass concentrations were similar in both tanks, 30 and 34 μg Chla L−1. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

3.
Microphytobenthos production in the Gulf of Fos, French Mediterranean coast   总被引:1,自引:1,他引:0  
Microphytobenthic oxygen production was studied in the Gulf of Fos (French Mediterranean coast) during 1991/1992 using transparent and dark benthic chambers. Nine stations were chosen in depths ranging from 0.5 to 13 m, which represents more than 60% of bottoms in the Gulf. Positive net microphytobenthic oxygen production was seasonally detected down to 13 m; the maximum value attained was 60 mg O2 m−2 h−1 (0.7–0.8 g O2 m−2 d−1) in sediments at 0.5 m depth during spring and winter. Respiration rates were maximum in the sediments located at the mussel farm (5 m), in the center of the Gulf, with 135 mg O2 m−2 h−1 in spring (3.2 g O2 m−2 d−1); in the other locations, it ranged from 3.3 to 58.2 mg O2 m−2 h−1 (0.08–1.4 g O2 m−2 d−1). Compared to phytoplankton, microphytobenthos production was higher only in the bottoms < 1 m depth. In deeper bottom waters, phytoplankton production could be absent due to light limitation, while microphytobenthos was still productive. Phytoplankton production m−2 was generally higher than microphytobenthic production. Microphytobenthic biomass, higher than phytoplanktonic, varied from 27 to 379 mg Chl a m−2, the maximum in the mussel farm sediments, with the minimum in sandy shallow bottoms. Pigment analysis showed that microphytobenthos consisted mainly of diatoms (Chl c and fucoxanthin) but other algal groups containing Chl b could become seasonally important. A Principal Component Analysis suggested that the main statistical factors explaining the distribution of our observations may be interpreted in terms of enrichment in phaeopigments and light; the role of Chl a appearing paradoxically as secondary in benthic production rates. Phaeopigments are mainly constituted by phaeophorbides, which indicate grazing processes. The influence of the mussel farm on the oxygen balance is noticeable in the whole Gulf.  相似文献   

4.
Summary Pentapora fascialis, one of the largest living bryozoan, is often a predominant part of the benthos on hard subtidal bottoms in the Mediterranean Sea. Conversion factors calculated from laboratory measurements of colony size, biomass and skeleton weight, combined with density of colonies and mean annual growth rate allowed the estimation of carbonate standing stock, biomass and carbonate production ofPentapora fascialis in five sites in the Ligurian Sea. Carbonate standing stock ranged from 281 to 2490 g·m−2, colony biomass varied from 8.82 to 78.01 g·m−2, with a ratio biomass to carbonate standing stock of about 3%. Carbonate production of the bryozoan ranged in the five sites from 358 to 1214 g·m−2·y−1. If compared with the few data available on carbonate production of bryozoans and other sublittoral benthic bioconstructors in the temperate regions,Pentapora fascialis has to be considered one of the major contributors to the carbonatebudget.  相似文献   

5.
Microphytoplankton populations were studied in shallow coastal water (<60 m) near the Brazilian Antarctic Station Comandante Ferraz (EACF) and three reference areas in Admiralty Bay in early and late summer (2002–2003). Phytoplankton was diverse (113 taxa), but not abundant (103 cells l−1). The highest abundances (>104 cells l−1) were caused by pennate benthic diatoms (Fragilaria striatula Lyngbye) that occurred mainly in early summer, associated with the presence of ice. In late summer, when the water temperature (−0.4 to 1.5°C), salinity (34 to 35), and phosphate (2.6 to 4.5 μmol l−1) were highest and the dissolved oxygen was lowest (6.4 to 2.9 ml l−1), centric diatoms (Thalassiosira spp.) were more abundant, suggesting an influence of oceanic waters. Phytoplankton abundance (≤102 cells l−1) and chlorophyll a concentrations (0.22 μg l−1) were lowest close to EACF. Pennate diatoms were dominant close to shore and in surface waters elsewhere, probably because of ice melting or sediment resuspension caused by water mixing.  相似文献   

6.
Chilina gibbosa is an endemic snail widely distributed in Patagonia, Argentina. Due to its importance in the benthic fauna and in the diet of some fish in the oligo-mesotrophic reservoir Ezequiel Ramos Mexía (39° 30′ S, 69° 00′ W), special attention has been given to its life cycle, growth patterns and annual production. Samples were taken monthly at five littoral stations between June 1983 and July 1984. Mean abundance and biomass of C. gibbosa were much higher in vegetated stations dominated by Potamogeton berteroanus (Station 1 : 583 ind. m−2, 5.95 g AFDM m−2) or by Nitella clavata (Station 5 : 275 ind. m−2, 4.18 g AFDM m−2) than bare stations with low transparency or stations with other macrophytes. The snails presented a clustered spatial pattern and their abundance was significantly correlated with macrophyte wet biomass only when this was above 250 g m−2. Analysis of size distributions showed an annual life cycle with a reproductive period in the summer. However, differences in recruitment and growth occurred probably due to differences in water temperature and food availability. Growth was maximum in summer and almost absent during winter. Hence, shell growth data fit a sigmoid curve well, and growth was somewhat higher at Station 1. Annual production at Stations 1 and 5, estimated by the ‘growth increment summation’ method (28.8 g AFDM m−2 and 14.18 g AFDM m−2 respectively), was among the highest recorded for pulmonate gastropods, possibly due to a low interspecific competition. The P : B ratio values were within the range for univoltine gastropods (4.84 and 3.39). The high productivity and turnover rate of these snails grant a high availability of food for the abundant molluscivore, the silverside Patagonina hatcheri.  相似文献   

7.
Life-history and production of Olinga feredayi in both benthic and hyporheic stream habitats were investigated in a pristine Waikato, New Zealand, forest stream over two years to investigate the contribution of hyporheic habitat to total secondary production. O. feredayi had a univoltine life-history with adult emergence occurring from November to March. Larvae with case lengths < 2 mm were present on most dates suggesting delayed egg hatching. Benthic densities were inversely related to maximum peak daily flow in the month prior to sampling, and positively related to the dry mass of particulate organic matter present in samples. Reach-average benthic production calculated by the size-frequency method was 0.024 g DM m−2 year−1. Hyporheic production was 4.276 g DM m−3 year−1 and 6.462 g DM m−3 year−1 in colonisation baskets set at 15–30 cm and 30–45 cm within the substratum, respectively, 2.3–3.4 times greater than production in surface baskets (0–15 cm). Averaged out over the reach scale, it was estimated that 96% of annual secondary production of O. feredayi occurred in hyporheic habitats >10 cm below the streambed surface. Our study clearly demonstrates that only sampling benthic habitats can lead to gross under-estimation of population-level annual production, and provides evidence for the role of the hyporheos as a source of secondary production that may partly account for the Allen Paradox.  相似文献   

8.
The number of common eiders (Somateria mollissima borealis) in west Greenland declined dramatically during the twentieth century, supposedly because of human activities. However, their sensitivity to alternative drivers of variation, such as climate conditions, diseases or food availability, remains unstudied. In this study, we describe prey availability and assess the trophic coupling between eiders and their macrobenthic prey in a shallow inlet, Nipisat Sound; a key wintering habitat in the south-west Greenland Open Water Area. Macrobenthic species abundance and biomass were studied, and annual production was estimated by an empirical model, including environmental characteristics, fauna composition and individual biomass. In spring 2008, average macrozoobenthic abundance and biomass were 6,912 ind m−2 and 28.4 g ash-free dry mass (AFDM) m−2 (647 kJ m−2), respectively. Annual production was estimated at 13.9 g AFDM m−2 year−1 (317 kJ m−2 year−1). During the winters of 2008–2010, we monitored the number of common eiders (S. mollissima borealis) and king eiders (Somateria spectabilis) and observed a distinct peak in abundance during winter with up to 15.000 birds in Nipisat Sound. Based on physiological costs of different activities in combination with the observed behavioural pattern, we obtained an estimate of the energy required for eiders to balance their costs of living, which amounted to 58% of the estimated total annual production of macrobenthos in Nipisat Sound. This result suggests that eider predation affects macrobenthic species composition and biomass and demonstrates the potential importance of variations in prey availability for the population dynamics of eiders in Greenland.  相似文献   

9.
Abstract Seasonal variation in bacterioplankton abundance, biomass, and bacterioplankton production was studied over eight years in hypertrophic Lake S?byg?rd. Biologically, the lake is highly variable; this is due mainly to large interannual variation in fish recruitment. Bacterioplankton production was low during winter, typically 1–3 × 107 cells l−1 h−1, and high during summer, albeit greatly fluctuating with maximum rates typically ranging from 60 to 90 × 107 cells l−1 h−1 (or 0.4 to 0.6 mg C l−1 day−1). Less pronounced variations were found in bacterioplankton abundance, which typically ranged from 3–8 × 109 cells l−1 in winter to 15–30 × 109 cells l−1 during summer. The specific growth rate of bacterioplankton varied from 0.02–0.2 d−1 in winter to 0.5–2.3 day−1 during summer. Interpolated mean bacterioplankton production, in terms of carbon, ranged from 0.08 to 0.16 mg C l−1 day−1, corresponding to 1.6–5.5% of the phytoplankton production, while biomass ranged from 0.28 to 0.36 mg C l−1, corresponding to 1.9–4.6% of the phytoplankton biomass. We conducted regression analysis, relating the bacterioplankton variables to a number of environmental variables, and evaluated the interannual parameter variability. Chlorophyll a and phytoplankton production contributed less to the variation in the bacterioplankton variables than in most previous analyses using data from less eutrophic systems. We suggest that the proportion of phytoplankton production that is channelized through bacterioplankton in lakes decreases with increasing trophic state and decreasing mean depth. This probably reflects a concurrent increase in fish predation on macrozooplankton and loss by sedimentation. An important part of the residual variation in the equations hitherto proposed in the literature could be explained by variation in macrozooplankton biomass and pH > 10.2. A negative effect of high pH on bacterioplankton production was confirmed by laboratory experiments. The impact of different zooplankton varies considerably, with Daphnia seeming to have a negative impact on bacterioplankton abundance and, thereby, indirectly on bacterioplankton production, while Bosmina, rotifers, and cyclopoid copepods seem to stimulate both abundance and production. Bosmina apparently also stimulate the bacterioplankton specific growth rate. Received: 8 February 1996; Accepted: 16 July 1996  相似文献   

10.
Marta Illyová 《Biologia》2006,61(5):531-539
The species composition, seasonal dynamic of biomass and density of zooplankton were studied in two arms with a different hydrological regime. The samples were collected in two hydrologically different years — extremely wet in 2002 and extremely dry in 2003. In the first arm the mean annual chlorophyll-a concentration was 31.6 μg L−1 (2002) and relatively high 64.7 μg L−1 during 2003. Mean seasonal zooplankton wet biomass was low and varied: 11.6 g m−3 (2002) and 2.93 g m−3 (2003). Total zooplankton density was high (7,370 N L−1) in 2002, when rotifers predominated in an open water zone and contributed up to 81% of the total zooplankton biomass and 83% of the total zooplankton density. In medial and littoral zone, in total, 22 cladoceran and 15 copepod species were identified. In the second arm the mean annual concentration of chlorophyll-a was high: 74.8 μg L−1 (2002) and 61.4 μg L−1 (2003). Mean seasonal zooplankton wet biomass varied from 92.5 g m−3 (2002) and 44.10 g m−3 (2003). In 2002 the planktonic crustaceans predominated; their mean biomass was 87.1 g m−3 and B. longirostris formed more than 91% of this value. In 2003, the zooplankton density was high (15,687 N L−1), when rotifers contributed up to 94% of this value. The boom of rotifers (58,740 N L−1) was recorded in June 2003. In total, 45 cladoceran and 14 copepod species were recorded in the medial and littoral zones. During observation we concluded that the structure of zooplankton, particularly species composition, abundance, biomass and seasonal dynamics are affected by the fluctuation of water levels in the arms of the rivers’ inundation areas. This unstable hydrological regime prevented the development of planktonic crustaceans.  相似文献   

11.
Alchichica is a warm-monomictic, oligotrophic lake whose phytoplanktonic biomass is dominated by large size (average ca. 55 μm) diatoms. The fast sinking phytoplankton leads to silica, and other nutrient exportation out of the productive zone of the lake. The aim of the present study was to identify and measure the sedimentation fluxes of the diatom species and their temporal dynamics to better understand the magnitude of silica and carbon fluxes. Sediment-traps were exposed at three different depths and collected monthly. A total of 13 diatom species were observed in the traps. The maximum diatom flux was in February (304 × 106 cells m−2 day−1) related to the winter diatom bloom. The diatom silica (DSi) fluxes varied from 2.2 to 2,997 mg m−2 day−1 and the diatom carbon (DC) fluxes from 1.2 to 2,918 mg m−2 d−1. Cyclotella alchichicana was the main contributor (>98%) to the total DSi and DC fluxes. The annual diatom (15 × 109 cells m−2 year−1), DSi (147 g m−2 year−1) and DC (92 g m−2 year−1) fluxes are higher than in other aquatic ecosystems of similar or even higher trophic conditions. Our findings in Alchichica are indicative of the relevance of the phytoplankton type and size in understanding the role tropical and oligotrophic lakes play regarding silica and carbon fluxes. In addition, our results support previous findings suggesting that inland aquatic ecosystems are more important than formerly thought in processing carbon, and can, therefore, affect regional carbon balances.  相似文献   

12.
A limnological survey of 15 lakes and 6 streams was carried out on Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) during austral summer 2001–2002. Most of the surface waters had low conductivities (20–105 μS cm−1) and nutrients (total phosphorus 0.01–0.24 μM), but some coastal lakes were enriched by nutrient inputs from seal colonies and marine inputs. Plankton communities in the lakes contained picocyanobacteria (102–104 cells ml−1), diatoms, chrysophytes and chlorophytes, and a large fraction of the total biomass was bacterioplankton. Zooplankton communities were dominated by Boeckella poppei and Branchinecta gainii; the benthic cladoceran Macrothrix ciliata was also recorded, for the first time in Antarctica. The chironomids Belgica antarctica and Parochlus steinenii, and the oligochaete Lumbricillus sp., occurred in stream and lake benthos. The phytobenthos included cyanobacterial mats, epilithic diatoms and the aquatic moss Drepanocladus longifolius. These observations underscore the limnological richness of this seasonally ice-free region in maritime Antarctica and its value as a long-term reference site for monitoring environmental change.  相似文献   

13.
The abundance, community structure and nutrient content of periphyton, and the host plant taxa Chara, Hydrilla, Potamogeton, Vallisneria and Scirpus were studied in Lake Okeechobee, USA. Water levels were generally high during the study period (August 2002–January 2006), but substantial fluctuations occurred. All host plant biomass was seasonally variable but only Vallisneria biomass was spatially variable. All submerged plant beds disappeared after the passage of two hurricanes in September 2004, and a third hurricane passed over the lake in October 2005. Periphyton assemblages were statistically separated most by substrate and then by season. Prior to the hurricanes, annual maxima of periphyton biovolumes and those of summer submerged plant coverage coincided. During all study years, the diatom taxa dominated periphyton total biovolumes. Periphyton biomass was generally highest during the summer or prior to the hurricanes (in the case of epiphytes) and was spatially variable in the case of both Scirpus and Vallisneria. Epiphytic nutrient contents within each host plant group seasonally varied except for nitrogen and carbon in the Vallisneria epiphytes. Epipelic nutrient contents were spatially variable and seasonally variable for carbon. Nutrient contents in epipelon were significantly higher than that in Scirpus epiphytes and were similar but lower among all epiphytic communities. The total annual areal potential epiphytic phosphorus storage extrapolated during this study (2.0 × 10−4 metric tons ha−1 year−1) was underestimated because storage estimates for epipelon, Chara and Hydrilla-associated epiphytes were omitted. The Chara and Hydrilla-associated epiphytic nutrient storage values were omitted because of limited data, whereas the epipelic data may have not been spatially representative. For periphyton biovolume, host substrate type, water level fluctuation and hurricane impacts on host substrates appear to be more important than seasonal variation in such factors as temperature and nutrients. Epiphytic nutrient storage appears to be influenced most by water level fluctuation and hurricane-related impacts, while the host substrate type appears to be a less important factor than it is for periphyton biovolume. Maximum periphyton biomass and high nutrient storage in shallow subtropical and tropical eutrophic lakes may only occur at consistently lower water levels and during infrequent periods of disturbance, which enhance host substrate colonizable area.  相似文献   

14.
Recent technological advances have led to the discovery that free-living, planktonic protozoa are ubiquitous in nature and appear to be important components of pelagic food webs (e.g., fluorescent straining, flow cytometry). Despite this, limited information exists tying their seasonality to rate processes that drive succession patterns. The abundance, and seasonal growth and grazing loss of an entire protozoan assemblage were evaluated in Lake Michigan. The protozoan assemblage was species-rich (100 taxa) and abundant throughout the year in Lake Michigan. Nano-sized protozoa (Hnano and Pnano, <20 μm in size) ranged in abundance from 102 to 103 cells ml−1, while micro-protozoa (Hmicro and Pmico, >20 and <200 μm in size) ranged in abundance from 4 to 17 cells ml−1. The biomass of Hnano and Hmicro by itself represented more than 70–80% of crustacean zooplankton biomass, while Pnano and Pmicro constituted nearly 50% of phytoplankton biomass. Protozoa exhibited growth rates comparable to other components of the plankton in Lake Michigan, and some populations grew at rates similar to maximum rates determined in the laboratory (rates of 1–2 day−1). Overall, it appears that macro-zooplankton predation is a major loss factor counter-balancing growth with only small differences between the two rate processes (<0.1 day−1). Discrepancies between growth and grazing loss in the spring were likely attributed to sedimentation losses for larger species of tintinnids and dinoflagellates (Codonella, Tintinnidium, and Gymnodinium) that can account for their occurrence in the deep chlorophyll layer. In the summer, carnivory among similar sized species (Chromulina and small ciliates) may be additional loss factors impinging on the protozoan assemblage.  相似文献   

15.
Rodeo Lagoon, a low-salinity coastal lagoon in the Golden Gate National Recreation Area, California, United States, has been identified as an important ecosystem due to the presence of the endangered goby (Eucyclogobius newberri). Despite low anthropogenic impacts, the lagoon exhibits eutrophic conditions and supports annual episodes of very high phytoplankton biomass. Weekly assessments (February–December 2007) of phytoplankton indicated diatoms, Nodularia spumigena, Chaetoceros muelleri var. muelleri, flagellated protozoa, a mixed assemblage, and Microcystis aeruginosa dominated the algal community in successive waves. Phytoplankton succession was significantly correlated (r 2 = 0.37, p < 0.001) with averaged daily irradiance (max = 29.7 kW m−2 d−1), water column light attenuation (max = 14 m−1), and orthophosphate and dissolved inorganic carbon concentrations (max = 1.5 and 2920 μM, respectively). Negative effects of phytoplankton growth and decay included excessive ammonia concentrations (exceeded EPA guidelines on 77% of sampling days), hypoxia (<3 mg l−1 dissolved oxygen), and introduction of several microcystins, all in the latter half of the year. Our one-year study suggests that this coastal lagoon is a highly seasonal system with strong feedbacks between phytoplankton and geochemical processes.  相似文献   

16.
Abstract In many intertidal cohesive—sediment habitats, epipelic diatoms are the dominant microphytobenthic organisms. In such sediments, concentrations of colloidal carbohydrate [including the exopolymeric substances (EPS) produced by diatoms during motility] are closely correlated with the biomass (chlorophyll a) of epipelic diatoms. A model describing this relationship (log (conc. coll. carbo. + 1) = 1.40 + 1.02(log (chl. a conc. + 1)) was derived from published data. It was validated against published and unpublished data from 6 different estuaries, and accounted for 64.6% of the variation in sediment colloidal carbohydrate concentrations. The model was valid for intertidal habitats with cohesive sediments where epipelic diatoms constituted >50% of the microphytobenthic assemblage. In sites with noncohesive sediments, or where the microphytobenthic assemblage was dominated by other algal groups, the model was not applicable. The mean percentage of EPS in colloidal carbohydrate extracts varied between 11 and 37% for axenic cultures of epipelic diatoms (with higher values obtained during stationary phase), and between 22.7% and 24.3% for natural sediments dominated by epipelic diatoms. Assuming an EPS percentage of 25% in colloidal extracts yielded an EPS chl. a ratio of 2.62:1. Maximum rates of EPS production in diatom cultures occurred at the beginning of stationary phase (1.6–5.09 μg EPS μg−1 chl a d−1), with Nitzschia sigma having a significantly (P < 0.05) higher rate of production than N. frustulum, Navicula perminuta and Surirella ovata. Similar rates of EPS production were measured in the field. The dynamics of EPS production and loss on mudflats is discussed, with reference to the model and these production rates. Received: 25 February 1997; Accepted: 23 May 1997  相似文献   

17.
Annual gross primary productivity in mesotrophic Shahidullah Hall pond (Dhaka, Bangladesh) was 1383.35 g C m−2 y−1 (arithmetic mean). Daily primary productivity (between 1.6 and 6.8 g C m−2 d−1 was correlated with chlorophylla, day length and dissolved silica. Chlorophylla related significantly withk, incident light, SRP, alkalinity and conductivity. A negative correlation existed between biomass and rainfall. Productivity, biomass, conductivity, alkalinity, and SRP increased after mid-winter.k, I k andZ eu varied according seasonally.P max related directly with temperature. Seasonal variation of ∝ B was 0.0049–0.0258 mg C (mg chla mmol PAR)−1 m−2. Q10 was 2.12, community respiration 1334.99 g C m−2 y−1, and the underwater light climate 186.43μE m−2 s−1.  相似文献   

18.
As an important adaptation for survival in the sediments of intertidal flats, benthic diatoms move up and down in response to a wide range of environmental stimuli. We investigated the vertical migration of two diatoms—Cylindrotheca closterium (Agradh) Kützing (B-25) and Nitzschia sp. (B-3)—under different combinations of light intensity and temperature conditions. An imaging pulse amplitude modulated (PAM) fluorometer was used to measure the minimum fluorescence (F 0) in order to monitor variations in diatom biomass in surface sediments. Rapid light curves (RLCs) were applied to assess their photosynthetic activities. Both species had increased motility under higher temperatures, with the longer valved C. closterium being twice as fast as the shorter valved Nitzschia sp. The former was also influenced by exposure to light intensities of 100 or 250 μmol m−2 s−1, whereas the latter was not. Consequently, no light/temperature interaction effect was associated with the vertical migration of Nitzschia sp., perhaps because of its lower photosynthetic capacity and smaller cell size. Therefore, we conclude that motile benthic diatoms exhibit species-specific responses to light and temperature due to differences in their photosynthetic capability and morphological characteristics.  相似文献   

19.
 Diatom composition and biomass were investigated in the nearshore water (<30 m in depth) of Maxwell Bay, Antarctica during the 1992/1993 austral summer. Epiphytic or epilithic diatoms such as Fragilaria striatula, Achnanthes brevipes var. angustata and Licmophora spp. dominated the water column microalgal populations. Within the bay, diatom biomass in surface water was several times higher at the nearshore (2.4–14 μg C l-1) than at the offshore stations (>100 m) (1.2–3.2 μg C l-1) with a dramatic decrease towards the bay mouth. Benthic forms accounted for >90% of diatom carbon in all nearshore stations, while in the offshore stations planktonic forms such as Thalassiosira antarctica predominated (50–>90%). Microscopic examination revealed that many of these diatoms have become detached from a variety of macroalgae growing in the intertidal and shallow subtidal bottoms. Epiphytic diatoms persistently dominated during a 19-day period in the water column at a fixed nearshore station, and the biomass of these diatoms fluctuated from 0.86 to 53 μg C l-1. A positive correlation between diatom biomass and wind speed strongly suggests that wind-driven resuspension of benthic forms is the major mechanism increasing diatom biomass in the water column. Received: 28 April 1995/Accepted: 1 April 1996  相似文献   

20.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号