首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma-Glutamyltranspeptidase (GGT) is a periplasmic enzyme of Helicobacter pylori implicated in its pathogenesis towards mammalian cells. We have cloned and expressed the H. pylori strain 26695 recombinant GGT protein in Escherichia coli and purified it to homogeneity. The purified protein exhibited hydrolysis activity with very high affinities for glutamine and glutathione shown by apparent K(m) values lower than 1 muM. H. pylori cells were unable to take up extracellular glutamine and glutathione directly. Instead, these substances were hydrolysed to glutamate by the action of GGT outside the cells. The glutamate produced was then transported by a Na(+)-dependent reaction into H. pylori cells, where it was mainly incorporated into the TCA cycle and partially utilized as a substrate for glutamine synthesis. These observations show that one of the principle physiological functions of H. pylori GGT is to enable H. pylori cells to utilize extracellular glutamine and glutathione as a source of glutamate. As glutamine and glutathione are important nutrients for maintenance of healthy gastrointestinal tissue, their depletion by the GGT enzyme is hypothesized to account for the damaging of mammalian cells and the pathophysiology of H. pylori.  相似文献   

2.
Inactivation of Helicobacter pylori cadA, encoding a putative transition metal ATPase, was only possible in one of four natural competent H. pylori strains, designated 69A. All tested cadA mutants showed increased growth sensitivity to Cd(II) and Zn(II). In addition, some of them showed both reduced 63Ni accumulation during growth and no or impaired urease activity, which was not due to lack of urease enzyme subunits. Gene complementation experiments with plasmid (pY178)-derived H. pylori cadA failed to correct the deficiencies, whereas resistance to Cd(II) and Zn(II) was restored. Moreover, pY178 conferred increased Co(II) resistance to both the cadA mutants and the wild-type strain 69A. Heterologous expression of H. pylori cadA in an Escherichia coli zntA mutant resulted in an elevated resistance to Cd(II) and Zn(II). Expression of cadA in E. coli SE5000 harbouring H. pylori nixA, which encodes a divalent cation importer along with the H. pylori urease gene cluster, led to about a threefold increase in urease activity compared with E. coli control cells lacking the H. pylori cadA gene. These results suggest that H. pylori CadA is an essential resistance pump with ion specificity towards Cd(II), Zn(II) and Co(II). They also point to a possible role of H. pylori CadA in high-level activity of H. pylori urease, an enzyme sensitive to a variety of metal ions.  相似文献   

3.
Gamma-glutamyltranspeptidase (GGT) is a novel protein involved in the induction of Helicobacter pylori-mediated apoptosis; however, the signal pathway involved in GGT-induced apoptosis remains unclear. Using DNA recombination techniques, ggt was cloned into pET117b and transformed into Escherichia coli. Recombinant GGT was purified using nickel-affinity resin and was digested by thrombin. Recombinant GGT induced apoptosis in AGS cells in a time-dependent manner, which was confirmed by TUNEL staining, the MTT assay and immunoblot analysis for caspases-9, -3, Bax, Bcl-2, Bcl-xL and cytochrome c release. Activation of caspase-3 and -9 following exposure to GGT increased in a time-dependent manner and upregulation of proapoptotic Bax and a downregulation of antiapoptotic Bcl-2 and Bcl-xL was detected. Apoptotic signals also trigger changes in mitochondria, which lead to a release of cytochrome c into the cytosolic space. The GGT-deficient mutant was not as able to induce apoptosis as the wild-type strain. These results indicate that GGT of H. pylori induces apoptosis via a mitochondria-mediated pathway.  相似文献   

4.
Detection of gamma-glutamyl transpeptidase (GGT; ggt ) activity is one of the useful methods for a specific identification of Neisseria meningitidis. However, we previously happened to isolate a ggt -deficient N. meningitidis strain (NIID113) from a healthy carrier. In this study, in order to re-examine the reliability of the marker, we again investigated the GGT activity of 245 N. meningitidis human isolates and identified two other GGT-defective N. meningitidis isolates besides NIID113. The isolation frequency (1.2%) of ggt mutants among human isolates strongly confirmed the 98.8% reliability of GGT activity as the identification marker for N. meningitidis.  相似文献   

5.
Based on the results of mapping of ggt, eight strains were selected from a gene library of E. coli. One of the strains harboring pLC9-12 was found to show 14 times higher gamma-glutamyltranspeptidase activity per cell than the wild type strain. The ggt was subcloned to the BamHI site of pUC18 and the recombinant plasmid pSH101 was obtained. Ggt- phenotype of gamma-glutamyltranspeptidase-deficient mutants was complemented by pSH101. The specific activity of the enzyme in cells harboring pSH101 was 37-fold higher than that in the wild type cells. gamma-Glutamyltranspeptidase was isolated from the periplasmic fraction of the cells by simple two steps and crystallized.  相似文献   

6.
γ-Glutamyl transferases (GGT; EC 2.3.2.2) are glutathione-degrading enzymes that are represented in Arabidopsis thaliana by a small gene family of four members. Two isoforms, GGT1 and GGT2, are apoplastic, sharing broad similarities in their amino acid sequences, but they are differently expressed in the tissues: GGT1 is expressed in roots, leaves, and siliques, while GGT2 was thought to be expressed only in siliques. It is demonstrated here that GGT2 is also expressed in wild-type roots, albeit in very small amounts. GGT2 expression is enhanced in ggt1 knockout mutants, suggesting a compensatory effect to restore GGT activity in the root apoplast. Supplementation with 100 μM glutathione (GSH) resulted in the up-regulation of GGT2 gene expression in wild-type and ggt1 knockout roots, and of GGT1 gene expression in wild-type roots. Glutathione recovery was hampered by the GGT inhibitor serine/borate, suggesting a major role for apoplastic GGTs in this process. These findings can explain the ability of ggt1 knockout mutants to retrieve exogenously added glutathione from the growth medium.  相似文献   

7.
The functions of the riboflavin synthesis gene homologues ribA, ribBA, ribC, and ribD from Helicobacter pylori strain P1 were confirmed by complementation of defined Escherichia coli mutant strains. The H. pylori ribBA gene, which is similar to bifunctional ribBA genes of Gram-positive bacteria, fully complemented the ribB mutation and partially restored growth in a ribC mutant. However, ribBA did not complement the ribA mutation in E. coli, thus explaining the presence of the additional separate copy of the ribA gene in the H. pylori chromosome. In E. coli exclusively ribA conferred hemolytic activity and gave rise to production of molecules with fluorescence characteristics similar to flavins, as observed earlier. The E. coli hemolysin ClyA was not involved in causing the hemolytic phenotype. No riboflavin synthesis genes on plasmids conferred iron uptake functions to a siderophore-deficient mutant of E. coli. Marker exchange mutagenesis of the genes in H. pylori was not successful indicating that riboflavin synthesis is essential for basic metabolic functions of the gastric pathogen.  相似文献   

8.
Tetracycline resistance in clinical isolates of Helicobacter pylori has been associated with nucleotide substitutions at positions 965 to 967 in the 16S rRNA. We constructed mutants which had different sequences at 965 to 967 in the 16S rRNA gene present on a multicopy plasmid in Escherichia coli strain TA527, in which all seven rrn genes were deleted. The MICs for tetracycline of all mutants having single, double, or triple substitutions at the 965 to 967 region that were previously found in highly resistant H. pylori isolates were higher than that of the mutant exhibiting the wild-type sequence of tetracycline-susceptible H. pylori. The MIC of the mutant with the 965TTC967 triple substitution was 32 times higher than that of the E. coli mutant with the 965AGA967 substitution present in wild-type H. pylori. The ribosomes extracted from the tetracycline-resistant E. coli 965TTC967 variant bound less tetracycline than E. coli with the wild-type H. pylori sequence at this region. The concentration of tetracycline bound to the ribosome was 40% that of the wild type. The results of this study suggest that tetracycline binding to the primary binding site (Tet-1) of the ribosome at positions 965 to 967 is influenced by its sequence patterns, which form the primary binding site for tetracycline.  相似文献   

9.
Metronidazole is a critical ingredient for combination therapies of Helicobacter pylori infection, the major cause of peptic ulcer and gastric cancer. It has been recently reported that metronidazole resistance from H. pylori ATCC43504 is caused by the insertion of a mini-IS605 sequence and deletion of sequences in an oxygen insensitive NAD(P)H nitroreductase encoding gene (rdxA). We also found that an additional gene (frxA) encoding NAD(P)H flavin oxidoreductase in the same strain was truncated by frame-shift mutations. To assess whether the frxA truncation is also involved in metronidazole resistance, metronidazole sensitive H. pylori strains ATCC43629 and SS1 were transformed by the truncated frxA gene cloned from strain ATCC43504. All transformed cells grew on agar plates containing 16 microg ml(-1) of metronidazole. The involvement of the frxA gene in metronidazole resistance was also confirmed by insertion inactivation of frxA and/or rdxA genes from strain ATCC43629 and one metronidazole sensitive clinical isolate H. pylori 2600. In addition, the frxA gene cloned from the H. pylori 2600 showed metronidazole nitroreductase activity in Escherichia coli and rendered ordinary metronidazole resistant E. coli to metronidazole sensitive cell. These results indicate that the frxA gene may also be involved in metronidazole resistance among clinical H. pylori isolates.  相似文献   

10.
The urea cycle enzyme arginase (EC 3.5.3.1) hydrolyzes l-arginine to l-ornithine and urea. Mammalian arginases require manganese, have a highly alkaline pH optimum and are resistant to reducing agents. The gastric human pathogen, Helicobacter pylori, also has a complete urea cycle and contains the rocF gene encoding arginase (RocF), which is involved in the pathogenesis of H. pylori infection. Its arginase is specifically involved in acid resistance and inhibits host nitric oxide production. The rocF gene was found to confer arginase activity to Escherichia coli; disruption of plasmid-borne rocF abolished arginase activity. A translationally fused His(6)-RocF was purified from E. coli under nondenaturing conditions and had catalytic activity. Remarkably, the purified enzyme had an acidic pH optimum of 6.1. Both purified arginase and arginase-containing H. pylori extracts exhibited optimal catalytic activity with cobalt as a metal cofactor; manganese and nickel were significantly less efficient in catalyzing the hydrolysis of arginine. Viable H. pylori or E. coli containing rocF had significantly more arginase activity when grown with cobalt in the culture medium than when grown with manganese or no divalent metal. His(6)-RocF arginase activity was inhibited by low concentrations of reducing agents. Antibodies raised to purified His(6)-RocF reacted with both H. pylori and E. coli extracts containing arginase, but not with extracts from rocF mutants of H. pylori or E. coli lacking the rocF gene. The results indicate that H. pylori RocF is necessary and sufficient for arginase activity and has unparalleled features among the arginase superfamily, which may reflect the unique gastric ecological niche of this organism.  相似文献   

11.
Helicobacter pylori urease requires nickel ions in the enzyme active site for catalytic activity. Nickel ions must, therefore, be actively acquired by the bacterium. NixA (high-affinity nickel transport protein)-deficient mutants of H. pylori retain significant urease activity, suggesting the presence of alternate nickel transporters. Analysis of the nucleotide sequence of the H. pylori genome revealed a homolog of NikD, a component of an ATP-dependent nickel transport system in Escherichia coli. Based on this sequence, a 378-bp DNA fragment was PCR amplified from H. pylori genomic DNA and used as a probe to identify an H. pylori lambda ZAPII genomic library clone that carried these sequences. Four open reading frames of 621, 273, 984, and 642 bp (abcABCD) were revealed by sequencing and predicted polypeptides of 22.7, 9.9, 36.6, and 22.8 kDa, respectively. The 36.6-kDa polypeptide (AbcC) has significant homology (56% amino acid sequence identity) to an E. coli ATP-binding protein component of an ABC transport system, while none of the other putative proteins are significantly homologous to polypeptides in the available databases. To determine the possible contribution of these genes to urease activity, abcC and abcD were each insertionally inactivated with a kanamycin resistance (aphA) cassette and allelic exchange mutants of each gene were constructed in H. pylori UMAB41. Mutation of abcD resulted in an 88% decrease in urease activity to 27 +/- 31 mumol of NH3/min/mg of protein (P < 0.0001), and a double mutant of nixA and abcC resulted in the near abolishment of urease activity (1.1 +/- 1.4 mumol of NH3/min/mg of protein in the double mutant versus 228 +/- 92 mumol of NH3/min/mg of protein in the parent [P < 0.0001]). Synthesis of urease apoenzyme, however, was unaffected by mutations in any of the abc genes. We conclude that the abc gene cluster, in addition to nixA, is involved in production of a catalytically active urease.  相似文献   

12.
The goal of this study was to develop a simple plating medium to allow large-scale screening of water samples for the presence of Helicobacter pylori. Five conventional plating media (brain heart infusion, brucella agar, Columbia blood agar base, campylobacter agar kit Skirrow, and HPSPA medium), each containing a commercial antibiotic supplement, were initially evaluated. Eight strains selected as common waterborne organisms (Acinetobacter, Aeromonas, Bacillus, Escherichia coli, Enterobacter, Enterococcus, Helicobacter pylori, and Pseudomonas strains) were individually plated onto each of these media. Three organisms (Acinetobacter, E. coli, and H. pylori) were able to grow on all five media. This growth was unacceptable since Helicobacter grows very slowly and competing organisms must be inhibited for up to 7 days. Therefore, a more selective medium (HP agar) containing a novel mixture of growth supplements plus amphotericin B and polymyxin B was developed. This medium also included a phenol red color indicator for urease production. Aliquots of nonsterile well water that contained native flora (Flavobacterium, Serratia, Citrobacter, Pasteurella, Ochrobactrum, Rahnella, and unidentified molds) and were further adulterated with the eight strains listed above (10(6) CFU of each strain per 100 ml) were spiked with H. pylori and were plated. In spite of the heavy mixed microbial load, only H. pylori colonies grew during 7 days of incubation at 37 degrees C. The color indicator system allowed presumptive identification of H. pylori colonies sooner (12 to 20 h) than the conventional media tested allowed. The HP formulation developed in this study provides a medium with superior selectivity for H. pylori from mixed microbial populations in water and reduces the time required to complete the assay.  相似文献   

13.
Background:  Nickel-dependent urease activity and nickel supply are essential for successful colonization of Helicobacter pylori in the acidic environment of the human stomach. A comparison of media effects on these two activities have never been carried out. Additionally to H. pylori we cultivated an Escherichia coli strain expressing the urease and the nickel transporter NixA of H. pylori on the same four media and measured in all cases urease and nickel uptake activity.
Aim:  To compare nickel uptake and urease activity on an inter- and intraspecies level.
Results:  In H. pylori nickel uptake (four to 200 times) and urease activities (400 to 30,000 times) were found to be much higher in comparison to the tested E. coli strain after growth on all media. These differences could not be explained by reduced protein amounts in the heterologous host E. coli . On which media the two bacteria extracted most of the nickel were organism-dependent: E. coli on Brucella Broth, H. pylori on Trypticase Soy Broth, and Minimal Media.
Conclusion:  H. pylori took nickel much more efficiently up than E. coli . The observed differences in urease activity are most likely due to additional protein components absent in the recombinant E. coli strain. The observed variety in nickel uptake and urease activities on the different media in the same organism depended on the intrinsic nickel content and chelating capacities of media components. Different culture conditions may lead to varying results; generalizations should be concluded only after excluding their media dependence.  相似文献   

14.
Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologues of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. coli recBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection.  相似文献   

15.
幽门螺杆菌VacA重组蛋白表达、纯化及鉴定   总被引:2,自引:0,他引:2  
目的研究幽门螺杆菌空泡毒素(VacA)编码基因在大肠埃希菌中的表达及纯化重组蛋白的抗原性。方法将PET32a-vacA-E.coli BE21(DE3)工程菌株常规培养,碱裂解法小量提取重组质粒DNA,琼脂糖凝胶电泳进行酶切鉴定,基因测序法进行插入基因序列分析。重组蛋白采用IPTG诱导表达,镍亲和层析原理提纯,ELISA法检测其抗原性。结果经酶切鉴定表明,插入的基因片段全长约2240bp,测序分析及与Genebank比较,可以肯定插入片段为vacA基因,ELISA法检测重组蛋白具有良好的抗原性。结论VacA重组蛋白在大肠埃希菌中成功表达,重组蛋白具有良好的抗原性。  相似文献   

16.
In this study, a Helicobacter pylori-Escherichia coli shuttle vector was constructed for transferring DNA into H. pylori. The smallest cryptic plasmid (1.2 kb), pHP489, among those harbored by 77 H. pylori isolates was selected as a base replicon for constructing vectors. HindIII-digested pHP489 was ligated with a kanamycin resistance gene [aph(3')-III], which originated from Campylobacter jejuni, to produce the recombinant plasmid pHP489K. pHP489K was efficiently transformed into and stably maintained in H. pylori strains. The shuttle vector pBHP489K (3.6 kb) was constructed by the recombination of pHP489, ColE1, and aph(3')-III sequences. pBHP489K was reciprocally transformed into and maintained in both H. pylori and E. coli. Introduction of the shuttle vector clone DNA (pBHP489K/AB; 6.7 kb), containing the ureA and ureB genes of H. pylori, into urease-negative mutants of H. pylori led to the restoration of their urease activity. The transformants were confirmed to contain the incoming plasmid DNA. pBHP489K satisfied the requirements for an H. pylori-E. coli shuttle vector, implying that it might be a useful vector for investigating pathogenicity and restriction-modification systems of H. pylori.  相似文献   

17.
Chromosomal rearrangements and base substitutions contribute to the large intraspecies genetic diversity of Helicobacter pylori. Here we explored the base excision repair pathway for the highly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), a ubiquitous form of oxidized guanine. In most organisms, 8-oxoG is removed by a specific DNA glycosylase (Fpg in bacteria or OGG1 in eukaryotes). In the case where replication of the lesion yields an A/8-oxoG base pair, a second DNA glycosylase (MutY) can excise the adenine and thus avoid the fixation of the mutation in the next round of replication. In a genetic screen for H. pylori genes complementing the hypermutator phenotype of an Escherichia coli fpg mutY strain, open reading frame HP0142, a putative MutY coding gene, was isolated. Besides its capacity to complement E. coli mutY strains, HP0142 expression resulted in a strong adenine DNA glycosylase activity in E. coli mutY extracts. Consistently, the purified protein also exhibited such an activity. Inactivation of HP0142 in H. pylori resulted in an increase in spontaneous mutation frequencies. An Mg-dependent AP (abasic site) endonuclease activity, potentially allowing the processing of the abasic site resulting from H. pylori MutY activity, was detected in H. pylori cell extracts. Disruption of HP1526, a putative xth homolog, confirmed that this gene is responsible for the AP endonuclease activity. The lack of evidence for an Fpg/OGG1 functional homolog is also discussed.  相似文献   

18.
The confounding consequences of Helicobacter bilis infection in experimental mice populations are well recognized, but the role of this bacterium in human diseases is less known. Limited data are available on virulence determinants of this species. In Helicobacter pylori, γ-glutamyltranspeptidase (γGT) contributes to the colonization of the gastric mucosa and to the pathogenesis of peptic ulcer. The role of γGT in H. bilis infections remains unknown. The annotated genome sequence of H. bilis revealed two putative ggt genes and our aim was to characterize these H. bilis γGT paralogues. We performed a phylogenetic analysis to understand the evolution of Helicobacter γGTs and to predict functional activities of these two genes. In addition, both copies of H. bilis γGTs were expressed as recombinant proteins and their biochemical characteristics were analysed. Functional complementation of Esherichia coli deficient in γGT activity and deletion of γGT in H. bilis were performed. Finally, the inhibitory effect of T-cell and gastric cell proliferation by H. bilis γGT was assessed. Our results indicated that one gene is responsible for γGT activity, while the other showed no γGT activity due to lack of autoprocessing. Although both H. bilis and H. pylori γGTs exhibited a similar affinity to L-Glutamine and γ-Glutamyl-p-nitroanilide, the H. bilis γGT was significantly less active. Nevertheless, H. bilis γGT inhibited T-cell proliferation at a similar level to that observed for H. pylori. Finally, we showed a similar suppressive influence of both H. bilis and H. pylori γGTs on AGS cell proliferation mediated by an apoptosis-independent mechanism. Our data suggest a conserved function of γGT in the Helicobacter genus. Since γGT is present only in a few enterohepatic Helicobacter species, its expression appears not to be essential for colonization of the lower gastrointestinal tract, but it could provide metabolic advantages in colonization capability of different niches.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号